Skip to main content
Log in

On power integral bases of certain pure number fields defined by \(x^{42} - m\)

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Let \(K = {\mathbb {Q}} (\alpha )\) be a pure number field generated by a complex root \(\alpha\) of a monic irreducible polynomial \(F(x) = x^{42} -m \in {{\mathbb {Z}}}[x]\), where \(m \ne \pm 1\) is a square-free rational integer. In this paper, we study the monogenity of K. We prove that if \(m\not \equiv 1\ \mathrm{(mod }{4})\), \(m\not \equiv \mp 1 \ \mathrm{(mod }{9})\), and \(\overline{m}\not \in \{\mp 1, 18, 19, 30, 31\} \ \mathrm{(mod }{49})\), then K is monogenic. But, if \(m \equiv 1\ \mathrm{(mod }{4})\), or \(m \equiv 1 \ \mathrm{(mod }{9})\), or \(m \equiv 1 \ \mathrm{(mod }{49})\), then K is not monogenic. Our results are illustrated by some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmad, S., Nakahara, T., Hameed, A.: On certain pure sextic fields related to a problem of Hasse. Int. J. Alg. Comput. 26(3), 577–583 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ahmad, S., Nakahara, T., Husnine, S.M.: Power integral bases for certain pure sextic fields. Int. J. Number Theory 10(8), 2257–2265 (2014)

    Article  MathSciNet  Google Scholar 

  3. Ben Yakkou, H., Chillali, A., El Fadil, L.: On Power integral bases for certain pure number fields defined by \( x^{2^r \cdot 5^s}- m \). Comm. Algebra 49(7), 2916–2926 (2021)

    Article  MathSciNet  Google Scholar 

  4. Ben Yakkou, H., El Fadil, L.: On monogenity of certain pure number fields defined by \(x^{p^r}-m\). I. J. Number Theory (2021). https://doi.org/10.1142/S1793042121500858

    Article  MATH  Google Scholar 

  5. Ben Yakkou, H., Kchit, O.: On Power integral bases for certain pure number fields defined by \(x^{3^r}- m\). Sao Paulo J. Math. Sci (2021). https://doi.org/10.1007/s40863-021-00251-2

    Article  Google Scholar 

  6. Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen. Göttingen Abhandlungen 23, 1–23 (1878)

    Google Scholar 

  7. El Fadil, L.: On power integral bases for certain pure number fields defined by \(x^{3^u\cdot 7^v}-m\) (To appear in forthcoming issue of Coll. Math.)

  8. El Fadil, L.: On Power integral bases for certain pure sextic fields. Bol. Soc. Paran. Math (2020). https://doi.org/10.5269/bspm.42373

    Article  MATH  Google Scholar 

  9. El Fadil, L.: On Power integral bases for certain pure number fields defined by \(x^{24}- m\). Stud. Sci. Math. Hung. 57(3), 397–407 (2020)

    MATH  Google Scholar 

  10. El Fadil, L.: On Newton polygon’s techniques and factorization of polynomial over henselian valued fields. J. Algebra Appl. 19(10), 2050188 (2020)

    Article  MathSciNet  Google Scholar 

  11. El Fadil, L., Montes, J., Nart, E.: Newton polygons and \(p\)-integral bases of quartic number fields. J. Algebra Appl 11(4), 1250073 (2012)

    Article  MathSciNet  Google Scholar 

  12. El Fadil, L.: Computation of a power integral basis of a pure cubic number field. Int. J. Contemp. Math. Sci 2(13–16), 601–606 (2007)

    Article  MathSciNet  Google Scholar 

  13. Gaál, I.: Diophantine equations and power integral bases, Theory and algorithm, Second Birkhäuser, Boston (2019)

  14. Gaál, I., Remete, L.: Power integral bases and monogenity of pure fields. J. Number Theory 173, 129–146 (2017)

    Article  MathSciNet  Google Scholar 

  15. Gaál, I., Remete, L.: Non-monogenity in a family of octic fields. Rocky Mountain J. Math 47(3), 817–824 (2017)

    Article  MathSciNet  Google Scholar 

  16. Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory. Tran. Math. Soc. American 364(1), 361–416 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hameed, A., Nakahara, T.: Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. R épub. Soc. Roum. 58(106)(4), 419–433 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Hasse, H.: Zahlentheorie. Akademie-Verlag, Berlin (1963)

    MATH  Google Scholar 

  19. Motoda, Y., Nakahara, T., Shah, S.I.A.: On a problem of Hasse. J. Number Theory 96, 326–334 (2002)

    Article  MathSciNet  Google Scholar 

  20. Narkiewicz, W.: Elementary and analytic theory of algebraic numbers, 3rd edn. Springer (2004)

  21. Ore, O.: Newtonsche Polygone in der Theorie der algebraischen Korper. Math. Ann. 99, 84–117 (1928)

    Article  MathSciNet  Google Scholar 

  22. Pethö, A., Pohst, M.: On the indices of multiquadratic number fields. Acta Arith 153(4), 393–414 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lhoussain El Fadil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Fadil, L., Ben Yakkou, H. & Didi, J. On power integral bases of certain pure number fields defined by \(x^{42} - m\). Bol. Soc. Mat. Mex. 27, 81 (2021). https://doi.org/10.1007/s40590-021-00388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40590-021-00388-2

Keywords

Mathematics Subject Classification

Navigation