Skip to main content
Log in

On monogenity of certain pure number fields defined by \(x^{20}-m\)

  • Original Article
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Let \(K = \mathbb {Q} (\alpha )\) be a pure number field generated by a complex root \(\alpha\) of a monic irreducible polynomial \(F(x) = x^{20}-m\), with \(m \ne \mp 1\) a square free rational integer. In this paper, we study the monogenity of K. We prove that if \(m\not \equiv 1\ \text{(mod } {4})\) and \(\overline{m}\not \in \{\overline{1}, \overline{7}, \overline{18}, \overline{24}\} \ \text{(mod } {25})\), then K is monogenic. But if \(m\equiv 1\ \text{(mod } {16})\) or \(m\equiv 1\ \text{(mod } {25})\), then K is not monogenic. Some illustrating examples are given too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ahmad, S., Nakahara, T., Husnine, S.M.: Power integral bases for certain pure sextic fields. Int. J. Number Theory 10(8), 2257–2265 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmad, S., Nakahara, T., Hameed, A.: On certain pure sextic fields related to a problem of Hasse. Int. J. Alg. Comput. 26(3), 577–583 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohen, H.: A Course in Computational algebraic number theory, GTM 138. Springer-Verlag, Berlin Heidelberg (1993)

    Book  Google Scholar 

  4. Dedekind, R.: Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen. Göttingen Abhandlungen 23, 1–23 (1878)

    Google Scholar 

  5. El Fadil, L.: Computation of a power integral basis of a pure cubic number field. Int. J. Contemp. Math. Sci. 2(13–16), 601–606 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. El Fadil, L.: On power integral bases for certain pure sextic fields. Bol. Soc. Paran. Math. (2020). https://doi.org/10.5269/bspm.42373

  7. El Fadil, L.: On power integral bases for certain pure number fields fields. Pub. Math. Deb. (forthcoming) arXiv:2006.11230

  8. El Fadil, L.: On power integral bases for certain pure number fields defined by $x^{18}-m$ (To appear in a forthcoming issue of Comm. Math. Univ. Carol.)

  9. El Fadil, L.: On power integral bases for certain pure number fields defined by $x^{36}-m$ (To appear in a forthcoming issue of Stud. Sci. Math. Hung.)

  10. El Fadil, L.: On power integral bases for certain pure number fields defined by \(x^{24}-m\). Stud. Sci. Math. Hung. 57, 397–407 (2020)

    MATH  Google Scholar 

  11. El Fadil, L.: On Newton polygons techniques and factorization of polynomials over Henselian fields. J. Algebra and Appl. 19(10), 2050188 (2020). https://doi.org/10.1142/S0219498820501881

    Article  MathSciNet  MATH  Google Scholar 

  12. El Fadil, L., Montes, J., Nart, E.: Newton polygons and p-integral bases of quartic number fields. J. Algebra and Appl. 11(4), 1250073 (2012). https://doi.org/10.1142/S0219498812500739

    Article  MathSciNet  MATH  Google Scholar 

  13. Funakura, T.: On integral bases of pure quartic fields. Math. J. Okayama Univ. 26, 27–41 (1984)

    MathSciNet  MATH  Google Scholar 

  14. Gaál, I.: Power integral bases in algebraic number fields. Ann. Univ. Sci. Budapest. Sect. Comp. 18, 61–87 (1999)

    MATH  Google Scholar 

  15. Gaál, I.: Diophantine equations and power integral bases. Theory and algorithm, Second edition, Boston, Birkhäuser (2019)

    Book  MATH  Google Scholar 

  16. Gaál, I., Olajos, P., Pohst, M.: Power integral bases in orders of composite fields. Exp. Math. 11(1), 87–90 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gaál, I., Remete, L.: Binomial thue equations and power integral bases in pure quartic fields. JP J. Algebra Number Theory Appl. 32(1), 49–61 (2014)

    MATH  Google Scholar 

  18. Gaál, I., Remete, L.: Power integral bases and monogenity of pure fields. J. Number Theory 173, 129–146 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Guàrdia, J., Montes, J., Nart, E.: Newton polygons of higher order in algebraic number theory. Tran. Math. Soc. Am. 364(1), 361–416 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hameed, A., Nakahara, T., Husnine, S.M.: On existence of canonical number system in certain classes of pure algebraic number fields. J. Prime Res. Math. 7, 19–24 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Hameed, A., Nakahara, T.: Integral bases and relative monogenity of pure octic fields. Bull. Math. Soc. Sci. Math. Roum. 58(4), 419–433 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Hasse, H.: Zahlentheorie. Akademie-Verlag, Berlin (1963)

    Book  MATH  Google Scholar 

  23. Hensel, K.: Theorie der algebraischen Zahlen. Teubner Verlag, Leipzig Berlin (1908)

    MATH  Google Scholar 

  24. Montes, J., Nart, E.: On a theorem of Ore. J. Algebra 146(2), 318–334 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Motoda, Y., Nakahara, T., Shah, S.I.A.: On a problem of Hasse. J. Number Theory 96, 326–334 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Neukirch, J.: Algebraic Number Theory. Springer-Verlag, Berlin (1999)

    Book  MATH  Google Scholar 

  27. Ore, O.: Newtonsche Polygone in der Theorie der algebraischen Korper. Math. Ann. 99, 84–117 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pethö, A., Pohst, M.: On the indices of multiquadratic number fields. Acta Arith. 153(4), 393–414 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is deeply grateful for the anonymous referee for his careful checking. As well as for Professor Enric Nart who introduced him to Newton polygon techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lhoussain El Fadil.

Additional information

Communicated by Julio Andrade.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadil, L.E. On monogenity of certain pure number fields defined by \(x^{20}-m\). São Paulo J. Math. Sci. 16, 1063–1071 (2022). https://doi.org/10.1007/s40863-021-00254-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-021-00254-z

Keywords

Mathematics Subject Classification

Navigation