Skip to main content
Log in

Gauge theory and string topology

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

Given a principal bundle over a closed manifold, \(G \rightarrow P \rightarrow M\), let \(P^{Ad} \rightarrow M\) be the associated adjoint bundle. Gruher and Salvatore (Proc Lond Math Soc 96(3), 78106 2008) showed that the Thom spectrum \((P^\mathrm{Ad})^{-TM}\) is a ring spectrum whose corresponding product in homology is a Chas-Sullivan type string topology product. We refer to this spectrum as the “string topology spectrum of P”, \( \mathcal {S}(P)\). In the universal case when P is contractible, \(\mathcal {S}(P) \simeq LM^{-TM}\) where LM is the free loop space of the manifold. This ring spectrum was introduced by the authors in Cohen et al. (Math Annalen 324, 773–798 2002) as a homotopy theoretic realization of the Chas-Sullivan string topology of M. The main purpose of this paper is to introduce an action of the gauge group of the principal bundle, \(\mathcal {G}(P)\) on the string topology spectrum \(\mathcal {S}(P)\), and to study this action in detail. Indeed we study the entire group of units and the induced representation \(\mathcal {G}(P) \rightarrow GL_1(\mathcal {S}(P))\). We show that this group of units is the group of homotopy automorphisms of the fiberwise suspension spectrum of P. More generally we describe the homotopy type of the group of homotopy automorphisms of any E-line bundle for any ring spectrum E. We import some of the basic ideas of gauge theory, such as the action of the gauge group on the space of connections to the setting of E-line bundles over a manifold and do explicit calculations. We end by discussing a functorial perspective, which describes a sense in which the string topology spectrum \(\mathcal {S}(P)\) of a principal bundle is the “linearization” of the gauge group \(\mathcal {G}(P)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, M., Blumberg, A.J., Gepner, D.J., Hopkins, M.J., Rezk, C.: Units of ring spectra and Thom Spectra. Preprint. arXiv:0810.4535

  2. Ando, M., Blumberg, A.J., Gepner, D., Hopkins, M.J., Rezk, C.: An \(\infty \)-categorical approach to R-line bundles, R-module Thom spectra, and twisted R-homology. Preprint (2012)

  3. Atiyah, M.F.: Thom complexes, Proc. Lond. Math. Soc. 3(11), 291–310 (1961)

  4. Atiyah, M., Bott, R.: The Yang-Mills equations over Riemann surfaces, Phil. Trans. R. Soc. Lond. A 308, 523–615 (1982)

  5. Carlsson, G., Cohen, R.L.: The free loop space and the cyclic groups, Commentari Math. Helvetici. 62, 423–449 (1987)

  6. Cohen, R.L.: The free loop space of a suspension. Springer Lect. Notes 1286, 193–207 (1987)

    MathSciNet  Google Scholar 

  7. Chas, M., Sullivan, D.: String topology. arXiv:math.GT/9911159

  8. Cohen, R.L., Jones, J.D.S.: A homotopy theoretic realization of string topology. Math. Annalen, 324, 773–798 (2002). arXiv:math.GT/0107187

  9. Cohen, R.L., Jones, J.D.S., Yan, J.: The loop homology algebra of spheres and projective spaces. Progr. Math. 215, 77–92 (2003). preprint: http://arxiv.org/pdf/math/0210353

  10. Cohen, R.L., Klein, J.R.: Umkehr maps, homology, homotopy, and applications 11(1), 17–33 (2009). Preprint. arXiv:0711.0540

  11. Félix, Y., Thomas, J.-C.: Monoid of self-equivalences and free loop spaces. Proc. Am. Math. Soc. 132(1), 305312 (2004)

  12. Goodwillie, T.: Calculus. II. Analytic functors., K-Theory 5 (1991/92), no. 4, 295332

  13. Gruher, K., Salvatore, P.: Generalized string topology operations. Proc. Lond. Math. Soc. 96(3), 78106 (2008)

  14. Hu, P.: Duality for smooth families in equivariant stable homotopy theory. Asterisqué 285 (2003)

  15. Joyal, A.: Quasi-categories and Kan complexes. J. Pure Appl. Algebra 175, 207–222 (2002). Special volume celebrating the 70th birthday of Max Kelley

  16. Klein, J.R.: The dualizing spectrum of a topological group. Math. Ann. 319, 421–456 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Klein, J.R.: The dualizing spectrum II. Algebr. Geom. Topol. 7, 109–133 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Malkiewich, C.: Stanford University Ph.D. thesis, in preparation. See A tower connecting gauge groups to string topology (2012). preprint http://arxiv.org/pdf/1209.1778

  19. May, J.P., Sigurdsson, J.: Parametrized homotopy theory. Mathematical surveys and monographs, vol. 132, Am. Math. Soc.: Mathematical Surveys and Monographs, vol. 132. Am, Math. Soc. (2006)

  20. Weiss, M., Williams, B.: Automorphisms of manifolds and algebraic \(K\)-theory I. K-theory 1, 575–626 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph L. Cohen.

Additional information

Dedicated to the memory of Samuel Gitler. He was a friend and mentor to both authors. He will be greatly missed.

The Ralph L. Cohen was partially supported by a grant from the NSF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, R.L., Jones, J.D.S. Gauge theory and string topology. Bol. Soc. Mat. Mex. 23, 233–255 (2017). https://doi.org/10.1007/s40590-016-0134-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-016-0134-6

Keywords

Navigation