Skip to main content
Log in

Cherenkov radiation in a planarly layered waveguide in the case of polarized waves

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

In the present work, we consider an isotropic planarly layered waveguide in the case of polarized waves, and calculate the Green’s function associated with a motionless unit point source in the stationary state. On the basis of the Green’s function, we approach the dynamical problem of a point source that is in uniform motion in the waveguide. The mathematical description of the transverse electric and transverse magnetic waves generated by the moving point source is given in the form of double oscillatory integrals of the time and the frequency. Then these integrals are written in terms of a large parameter \(\lambda >0\) in order to apply the stationary phase method. This gives asymptotic formulas for the electromagnetic field as \(\lambda \rightarrow \infty \). The calculation of the stationary points of the phase leads us to the condition that guarantees the existence of Cherenkov radiation in the waveguide. Finally, the analysis here presented is applied to some numerical examples, which are worked with an algorithm based on the spectral parameter power series method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The values of \(n_{1}\) and \(n_{2}\) may be associated to crystalline materials such as \(\mathrm{SiO}_{2}\) at 446.5 nm wavelength, and Si at 1357 nm wavelength, respectively. These materials typically are used in integrated optics.

References

  1. Aartsen, M.G., et al.: Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube. Phys. Rev. D 91, 022001 (2015)

    Article  Google Scholar 

  2. Afanasiev, G.N., Kartavenko, V.G.: Radiation of a point charge uniformly moving in a dielectric medium. J. Phys. D Appl. Phys. 31, 2760–2776 (1998)

    Article  Google Scholar 

  3. Afanasiev, G.N., Kartavenko, V.G., Magar, E.N.: Vavilov–Cherenkov radiation in dispersive medium. Physica B 269(1), 95–113 (1999)

    Article  Google Scholar 

  4. Afanasiev, G.N., Eliseev, S.M., Stepanovsky, Yu.P: Semi-analytic treatment of the Vavilov–Cherenkov radiation. Phys. Scr. 60, 535–546 (1999)

  5. Afanasiev, G.N.: Vavilov–Cherenkov and Synchrotron Radiation. Foundations and Applications. Kluwer, New York (2005)

    MATH  Google Scholar 

  6. Aginian, M.A., Ispirian, K.A., Ispiryan, M., Ivanyan, M.I.: Gamma Cherenkov-transition radiation produced by charged particles at an interface and in a stack of plates. J. Phys. Conf. Ser. 517, 012014 (2014)

    Article  Google Scholar 

  7. Andonian, G., Williams, O., Wei, X., Niknejadi, P., Hemsing, E., Rosenzweig, J.B., Muggli, P., Babzien, M., Fedurin, M., Kusche, K., Malone, R., Yakimenko, V.: Resonant excitation of coherent Cerenkov radiation in dielectric lined waveguides. Appl. Phys. Lett. 98, 202901 (2011)

    Article  Google Scholar 

  8. Antipov, S., Jing, C., Schoessow, P., Kanareykin, A., Yakimenko, V., Zholents, A., Gai, W.: High power terahertz radiation source based on electron beam wakefields. Rev. Sci. Instrum. 84, 022706 (2013)

    Article  Google Scholar 

  9. Antonello, M., et al.: A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS. Phys. Lett. B 711, 270–275 (2012)

    Article  Google Scholar 

  10. Barrera-Figueroa, V., Kravchenko, V.V., Rabinovich, V.S.: Spectral parameter power series analysis of isotropic planarly layered waveguides. Appl. Anal. 93, 729–755 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barrera-Figueroa, V., Rabinovich, V.S.: Asymptotics of the far field generated by a modulated point source in a planarly layered electromagnetic waveguide. Math. Methods Appl. Sci. 38, 1970–1989 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Barrera-Figueroa, V., Rabinovich, V.S.: Electromagnetic field generated by a modulated moving point source in a planarly layered waveguide. Russ. J. Math. Phys. (2016). (In press)

  13. Brekhovskikh, L.M.: Waves in Layered Media. Academic Press, London (1980)

    MATH  Google Scholar 

  14. Burlak, G., Rabinovich, V.S.: Time-frequency integrals and the stationary phase method in problems of waves propagation from moving sources. Symmetry Integrability Geom. Methods Appl. SIGMA 8, 96 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Burlak, G., Rabinovich, V.S., Henandez-Juarez, J.R.: Time-frequency integrals and the stationary phase method in problems of acoustic waves propagation from moving sources. Commun. Math. Anal. 14, 25–39 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Burlak, G., Rabinovich, V.S.: Propagation of electromagnetic waves generated by modulated moving source in dispersive lossy media. Math. Methods Appl. Sci. 38, 2012–2026 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Camley, R.E., Celinski, Z., Fal, T., Glushchenko, A.V., Hutchison, A.J., Khivintsev, Y., Kuanr, B., Harward, I.R., Veerakumar, V., Zagorodnii, V.V.: High-frequency signal processing using magnetic layered structures. J. Magn. Magn. Mater. 321, 2048–2054 (2009)

    Article  Google Scholar 

  18. Carmel, Y., Ivers, J., Kribel, R.E., Nation, J.: Intense coherent Cherenkov radiation due to the interaction of a relativistic electron beam with a slow-wave structure. Phys. Rev. Lett. 33, 1278 (1974)

    Article  Google Scholar 

  19. Carr, G.L., Martin, M.C., McKinney, W.R., Jordan, K., Neil, G.R., Williams, G.P.: High-power terahertz radiation from relativistic electrons. Nature 420, 153–156 (2002)

    Article  Google Scholar 

  20. Chew, W.C.: Waves and Fields in Inhomogeneous Media. IEEE Press, New York (1995)

    Google Scholar 

  21. Cook, A.M., Tikhoplav, R., Tochitsky, S.Y., Travish, G., Williams, O.B., Rosenzweig, J.B.: Observation of narrow-band terahertz coherent Cherenkov radiation from a cylindrical dielectric-lined waveguide. Phys. Rev. Lett. 103, 095003 (2009)

    Article  Google Scholar 

  22. de Vries, K.D., van den Berg, A.M., Scholten, O., Werner, K.: Coherent Cherenkov radiation from cosmic-ray-induced air showers. Phys. Rev. Lett. 107, 061101 (2011)

    Article  Google Scholar 

  23. Fedoryuk, M.V.: The Saddle-Point Method. Nauka, Moscow (1977). (In Russian)

    MATH  Google Scholar 

  24. Feng, Y.P., Majkrzak, C.F., Sinha, S.K., Wiesler, D.G., Zhang, H., Deckman, H.W.: Direct observation of neutron-guided waves in a thin-film waveguide. Phys. Rev. B 49, 10814 (1994)

    Article  Google Scholar 

  25. Galejs, J.: Terrestrial Propagation of Long Electromagnetic Waves. Pergamon Press, Oxford (1973)

    Google Scholar 

  26. Ginzburg, N.S., Cross, A.W., Golovanov, A.A., Mesyats, G.A., Pedos, M.S., Phelps, A.D.R., Romanchenko, I.V., Rostov, V.V., Rukin, S.N., Sharypov, K.A., Shpak, V.G., Shunailov, S.A., Ulmaskulov, M.R., Yalandin, M.I., Zotova, I.V.: Generation of electromagnetic fields of extremely high intensity by coherent summation of Cherenkov superradiance pulses. Phys. Rev. Lett. 115, 114802 (2015)

    Article  Google Scholar 

  27. Granet, G., Melezhik, P., Poyedinchuk, A., Sautbekov, S., Sirenko, Yu., Yashina, N.: Resonances in reverse Vavilov–Cherenkov radiation produced by electron beam passage over periodic interface. Int. J. Antennas Propag. 501, 784204 (2015)

    Google Scholar 

  28. Grigoryan, L.Sh, Mkrtchyan, A.R., Khachatryan, H.F., Arzumanyan, S.R., Wagner, W.: Self-amplified Cherenkov radiation from a relativistic electron in a waveguide partially filled with a laminated material. J. Phys. Conf. Ser. 357, 012004 (2012)

  29. Grudskii, S.M., Obresanova, O.A., Rabinovich, V.S.: Propagation of sound from a moving air-borne source in the ice-covered ocean. Akusticheskij Zhurnal 42, 191–196 (1996)

    Google Scholar 

  30. Il’ichev, V.I., Rabinovich, V.S., Rivelis, E.A., Khokha, U.V.: On the acoustic field of a moving narrow-band source in oceanic waveguides. Dokl. Akad. Nauk SSSR 304, 1123–1127 (1989)

    MathSciNet  Google Scholar 

  31. James, C.W., Ekers, R.D., Álvarez-Muñiz, J., Bray, J.D., McFadden, R.A., Phillips, C.J., Protheroe, R.J., Roberts, P.: LUNASKA experiments using the Australia telescope compact array to search for ultrahigh energy neutrinos and develop technology for the lunar Cherenkov technique. Phys. Rev. D 81, 042003 (2010)

    Article  Google Scholar 

  32. Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H.: Computational Ocean Acoustics. Springer, New York (2011)

    Book  MATH  Google Scholar 

  33. Kampert, K.-H., Unger, M.: Measurements of the cosmic ray composition with air shower experiments. Astropart. Phys. 35, 660–678 (2012)

    Article  Google Scholar 

  34. Katsnelson, B., Malykhin, A., Tckhoidze, A.: Propagation of broad-band signals in shallow water in the presence of horizontal stratification. J. Acoust. Soc. Am. 134, 4036–4036 (2013)

    Article  Google Scholar 

  35. Kozhevnikov, S.V., Rühm, A., Ott, F., Pleshanov, N.K., Major, J.: Magnetic layered structure for the production of polarized neutron microbeams. Physica B 406, 2463–2466 (2011)

    Article  Google Scholar 

  36. Kozhevnikov, S.V., Keller, T., Khaydukov, Yu., Ott, F., Rühm, A., Major, J.: Polarizing Fe–Co–Fe planar waveguides for the production of neutron microbeams. Phys. Procedia 42, 80–88 (2013)

    Article  Google Scholar 

  37. Kravchenko, V.V., Porter, M.R.: Spectral parameter power series for Sturm–Liouville problems. Math. Methods Appl. Sci. 33, 459–468 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Kuz’kin, V.M.: Propagation and resolution of pulse signals in oceanic waveguides. Phys. Wave Phenom. 17, 56–65 (2009)

    Article  Google Scholar 

  39. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon Press, Oxford (1984)

    MATH  Google Scholar 

  40. Liu, Y., Houard, A., Prade, B., Mysyrowicz, A., Diaw, A., Tikhonchuk, V.T.: Amplification of transition-Cherenkov terahertz radiation of femtosecond filament in air. Appl. Phys. Lett. 93, 051108 (2008)

    Article  Google Scholar 

  41. Marcuse, D.: Light Transmission Optics. Van Nostrand Reinhold, New York (1982)

    Google Scholar 

  42. Menelle, A., Pogossian, S.P., Le Gall, H., Desvignes, J.M., Ben Youssef, J.: Observation of magnetic thin films neutron waveguides. Physica B 234–236, 510–512 (1997)

  43. Murata, M., Tsuchida, T.: Asymptotics of Green functions and the limiting absorption principle for elliptic operators with periodic coefficients. J. Math. Kyoto Univ. 46, 713–754 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Nikitenko, YuV: Neutron standing waves in layered systems: formation, detection, and application in neutron physics and for investigation of nanostructures. Phys. Part. Nuclei 40, 890–947 (2009)

    Article  Google Scholar 

  45. Nusinovich, G.S., Zhao, D.: Combined resonances in cyclotron masers with periodic slow-wave structures. IEEE Trans. Plasma Sci. 43, 804–814 (2015)

    Article  Google Scholar 

  46. Obresanova, O.A., Rabinovich, V.S.: Acoustic field of a source moving along stratified waveguide surface. Akusticheskij Zhurnal 39, 517–521 (1993)

    Google Scholar 

  47. Obresanova, O.A., Rabinovich, V.S.: Acoustic field generated by moving sources in stratified waveguides. Wave Motion 27, 155–167 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Onishchenko, I.N., Sidorenko, D.Yu., Sotnikov, G.V.: Structure of electromagnetic field excited by an electron bunch in a semi-infinite dielectric-filled waveguide. Phys. Rev. E 65, 066501 (2002)

  49. Pal, S.: Numerical modelling of VLF radio wave propagation through Earth-ionosphere waveguide and its application to sudden ionospheric sisturbances (2015). arXiv:1503.05789

  50. Palit, S., Basak, T., Pal, S., Mondal, S.K., Chakrabarti, S.K.: Effect of solar flares on ionospheric VLF radio wave propagation, modeling with GEANT4 and LWPC and determination of effective reflection height. In: General Assembly and Scientific Symposium (URSI GASS), 2014 XXXIth URSI, pp. 1–4. IEEE (2014)

  51. Pan, W., Li, K.: Propagation of SLF/ELF Electromagnetic Waves. Springer, Berlin (2014)

    Book  Google Scholar 

  52. Rabinovich, V.S., Miranda-Sanchez, I.: Radiation from non uniformly moving sources in the plasma. In: Proceedings of the International Seminar—Days on Diffraction 2004, Saint Petersburg, pp. 163–174 (2004)

  53. Rabinovich, V.S., Hernández-Juárez, J.: Method of the spectral parameter power series in problems of underwater acoustics of the stratified ocean. Math. Methods Appl. Sci. 38, 1990–1999 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  54. Suizu, K., Koketsu, K., Shibuya, T., Tsutsui, T., Akiba, T., Kawase, K.: Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation. Opt. Express 17, 6676–6681 (2009)

    Article  Google Scholar 

  55. Sveshnikov, A.V.: The limit absorption principle for a waveguide. Dokl. Akad. Nauk SSSR 80, 345–347 (1951). (In Russian)

    Google Scholar 

  56. Tkach, Yu.V, Gadetskii, N.P., Bliokh, Y.P., Lemberg, E.A., Lyubarskii, M.G., Ermolenko, V.V., Dyatlova, V.V., Naisteter, S.I., Magda, I.I., Pushkarev, S.S., Skachek, G.V.: Emission by a relativistic beam at a magneto-Cherenkov resonance in a periodic waveguide. Sov. J. Plasma Phys. 5, 1012–1019 (1979)

  57. Tsunesada, Y., Katsuya, R., Mitsumori, Yu., Nakayama, K., Kakimoto, F., Tokuno, H., Tajima, N., Miranda, P., Salinas, J., Tavera, W.: New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region. Nucl. Instrum. Methods Phys. Res. Sect. A 763, 320–328 (2014)

    Article  Google Scholar 

  58. Tyukhtin, A.V., Galyamin, S.N.: Effect of amplification of Cherenkov radiation in an active medium with two resonant frequencies. In: Particle Accelerator Conference, 2007. PAC. IEEE, pp. 2829–2831. IEEE (2007)

  59. Vladimirov, V.S.: Equations of Mathematical Physics. Marcel Dekker Inc, New York (1971)

    MATH  Google Scholar 

  60. Wai, P.K.A., Chen, H.H., Lee, Y.C.: Radiation by “solitons” at the zero group-dispersion wavelength of single-mode optical fibers. Phys. Rev. A 41, 426–439 (1990)

    Article  Google Scholar 

  61. Wait, J.R.: Electromagnetic Waves in Stratified Media. Pergamon Press, Oxford (1970)

    MATH  Google Scholar 

  62. Wang, S., Hu, J., Guo, H., Zeng, X.: Optical Cherenkov radiation in an \({\rm {As}}_{2}{\rm {S}}_{3}\) slot waveguide with four zero-dispersion wavelengths. Opt. Express 21, 3067–3072 (2013)

  63. Yanai, A., Levy, U.: Radiation of a uniformly moving line charge in a zero-index metamaterial and other periodic media. Opt. Express 20, 18515–18524 (2012)

    Article  Google Scholar 

  64. Yeh, C., Shimabukuro, F.I.: The Essence of Dielectric Waveguides. Springer, New York (2008)

    Book  Google Scholar 

  65. Zhevago, N.K., Glebov, V.I.: Amplification of Cherenkov radiation in dielectric strings and capillaries. Nucl. Instrum. Methods Phys. Res. Sect. A 331, 592–596 (1993)

    Article  Google Scholar 

  66. Zimmermann, H.: Integrated Silicon Optoelectronics. Springer, Berlin (2000)

    Book  Google Scholar 

  67. Zorich, V.A.: Mathematical Analysis II. Springer, Berlin (2004)

    MATH  Google Scholar 

  68. Zhu, Y., Wei, Y., Li, Y.: Dispersive coefficient calculation for spherical stratified ionosphere. In: 12th International Conference on Signal Processing (ICSP), pp. 2013–2017. IEEE (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Barrera-Figueroa.

Additional information

To 60th birthday anniversary of Prof. Dr. Sergei Grudsky.

Research was partially supported by the National System of Investigators of Mexico (SNI). The work of V. Barrera-Figueroa was partially supported by the SIBE Program of the IPN. The work of V. S. Rabinovich was partially supported by the Conacyt Project 000000000179872.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrera-Figueroa, V., Rabinovich, V.S. Cherenkov radiation in a planarly layered waveguide in the case of polarized waves. Bol. Soc. Mat. Mex. 22, 431–459 (2016). https://doi.org/10.1007/s40590-016-0107-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-016-0107-9

Keywords

Mathematics Subject Classification

Navigation