Skip to main content
Log in

Analytic approximation of transmutation operators and related systems of functions

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

In Kravchenko and Torba (J Comput Appl Math 275:1–26, 2015) a method for approximate solution of Sturm–Liouville equations and related spectral problems was presented based on the construction of the Delsarte transmutation operators. The problem of numerical approximation of solutions and eigendata was reduced to approximation of a primitive of the potential by a finite linear combination of certain specially constructed functions obtained from the generalized wave polynomials introduced in Khmelnytskaya et al. (J Math Anal Appl 399:191–212, 2013) and Kravchenko and Torba (Complex Anal Oper Theory 9:379–429, 2015). The method allows one to compute both lower and higher eigendata with an extreme accuracy. Since the solution of the approximation problem is the main step in the application of the method, the properties of the system of functions involved are of primary interest. In Kravchenko and Torba (J Comput Appl Math 275:1–26, 2015) two basic properties were established: the completeness in appropriate functional spaces and the linear independence. In this paper we present a considerably more complete study of the systems of functions. We establish their relation with another linear differential second-order equation, find out certain operations (in a sense, generalized derivatives and antiderivatives) which allow us to generate the next such function from a previous one. We obtain the uniqueness of the coefficients of expansions in terms of such functions and a corresponding generalized Taylor theorem, as well as formulas for exact expansion coefficients involving the operations mentioned above. We also construct the invertible integral operators transforming powers of the independent variable into the functions under consideration and establish their commutation relations with differential operators. We present some error bounds for the solution of the approximation problem depending on the smoothness of the potential and show that these error bounds are close to optimal in order. Also, we provide a rigorous justification of the alternative formulation of the proposed method allowing one to make use of the known initial values of the solutions at the left endpoint of the spectral problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Begehr, H., Gilbert, R.: Transformations, Transmutations and Kernel Functions, vol. 1–2. Longman Scientific & Technical, Harlow (1992)

  2. Camporesi, R., Di Scala, A.J.: A generalization of a theorem of Mammana. Colloq. Math. 122(2), 215–223 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Campos, H., Kravchenko, V.V., Torba, S.M.: Transmutations, L-bases and complete families of solutions of the stationary Schrödinger equation in the plane. J. Math. Anal. Appl. 389(2), 1222–1238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carroll, R.W.: Transmutation Theory and Applications. Mathematics Studies, vol. 117. North-Holland, Amsterdam (1985)

  5. Castillo-Pérez, R., Kravchenko, V.V., Oviedo, H., Rabinovich, V.S.: Dispersion equation and eigenvalues for quantum wells using spectral parameter power series. J. Math. Phys. 52, 043522 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castillo-Pérez, R., Kravchenko, V.V., Torba, S.M.: Spectral parameter power series for perturbed Bessel equations. Appl. Math. Comput. 220, 676–694 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castillo-Pérez, R., Kravchenko, V.V., Torba, S.M.: Analysis of graded-index optical fibers by the spectral parameter power series method. J. Opt. 17, 025607 (2015)

    Article  Google Scholar 

  8. Cheney, E.W.: Introduction to Approximation Theory, 2nd edn. Chelsea, New York (1986)

    MATH  Google Scholar 

  9. Delsarte, J.: Sur certaines transformations fonctionnelles relatives aux équations linéaires dérivées partielles du second ordre. C. R. Acad. Sci. 206, 178–182 (1938)

  10. Delsarte, J., Lions, J.L.: Transmutations d’opérateurs différentiels dans le domaine complexe. Comment. Math. Helv. 32, 113–128 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  11. Erbe, L., Mert, R., Peterson, A.: Spectral parameter power series for Sturm–Liouville equations on time scales. Appl. Math. Comput. 218, 7671–7678 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jackson, D.: The Theory of Approximation. Reprint of the 1930 Original. American Mathematical Society, Providence (1994)

  13. Khmelnytskaya, K.V., Kravchenko, V.V., Baldenebro-Obeso, J.A.: Spectral parameter power series for fourth-order Sturm–Liouville problems. Appl. Math. Comput. 219, 3610–3624 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khmelnytskaya, K.V., Kravchenko, V.V., Rosu, H.C.: Eigenvalue problems, spectral parameter power series, and modern applications. Math. Meth. Appl. Sci. 38, 1945–1969 (2015)

  15. Khmelnytskaya, K.V., Kravchenko, V.V., Torba, S.M., Tremblay, S.: Wave polynomials and Cauchy’s problem for the Klein–Gordon equation. J. Math. Anal. Appl. 399, 191–212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khmelnytskaya, K.V., Rosu, H.C.: A new series representation for Hill’s discriminant. Ann. Phys. 325, 2512–2521 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kravchenko, V.V.: A representation for solutions of the Sturm–Liouville equation. Complex Var. Elliptic Equ. 53, 775–789 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kravchenko, V.V.: Applied Pseudoanalytic Function Theory. Frontiers in Mathematics. Birkhäuser, Basel (2009)

  19. Kravchenko, V.V., Morelos, S., Torba, S.M.: Liouville transformation, analytic approximation of transmutation operators and solution of spectral problems. Appl. Math. Comput. 273, 321–336 (2016)

    Article  MathSciNet  Google Scholar 

  20. Kravchenko, V.V., Morelos, S., Tremblay, S.: Complete systems of recursive integrals and Taylor series for solutions of Sturm–Liouville equations. Math. Meth. Appl. Sci. 35, 704–715 (2012)

  21. Kravchenko, V.V., Navarro, L.J., Torba, S.M.: Representation of solutions to the one-dimensional Schrödinger equation in terms of Neumann series of Bessel functions (submitted). arXiv:1508.02738

  22. Kravchenko, V.V., Porter, R.M.: Spectral parameter power series for Sturm–Liouville problems. Math. Meth. Appl. Sci. 33, 459–468 (2010)

  23. Kravchenko, V.V., Torba, S.M.: Transmutations for Darboux transformed operators with applications. J. Phys. A: Math. Theor. 45, # 075201 (2012)

  24. Kravchenko, V.V., Torba, S.M.: Transmutations and spectral parameter power series in eigenvalue problems. Oper. Theory Adv. Appl. 228, 209–238 (2013)

    MathSciNet  MATH  Google Scholar 

  25. Kravchenko, V.V., Torba, S.M.: Modified spectral parameter power series representations for solutions of Sturm–Liouville equations and their applications. Appl. Math. Comput. 238, 82–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kravchenko, V.V., Torba, S.M.: Construction of transmutation operators and hyperbolic pseudoanalytic functions. Complex Anal. Oper. Theory 9, 379–429 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kravchenko, V.V., Torba, S.M.: Analytic approximation of transmutation operators and applications to highly accurate solution of spectral problems. J. Comput. Appl. Math. 275, 1–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kravchenko, V.V., Torba, S.M., Velasco-García, U.: Spectral parameter power series for polynomial pencils of Sturm–Liouville operators and Zakharov–Shabat systems. J. Math. Phys. 56, 073508 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Levitan, B.M.: Inverse Sturm–Liouville Problems. VSP, Zeist (1987)

    MATH  Google Scholar 

  30. Marchenko, V.A.: Sturm–Liouville Operators and Applications, Revised edn. AMS Chelsea Publishing, Providence (2011)

    Book  MATH  Google Scholar 

  31. Sitnik, S.M.: Transmutations and applications: a survey. arXiv:1012.3741v1 (2010). In: Korobeinik, Yu.F., Kusraev, A.G. (eds.) Advances in Modern Analysis and Mathematical Modeling, pp. 226–293. Vladikavkaz Scientific Center of the Russian Academy of Sciences and Republic of North Ossetia-Alania, Vladikavkaz (2008)

  32. Tricomi, F.G.: Integral Equations. Reprint of the 1957 Original. Dover Publications, Inc., New York (1985)

  33. Trimeche, K.: Transmutation Operators and Mean-Periodic Functions Associated with Differential Operators. Harwood Academic Publishers, London (1988)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladislav V. Kravchenko.

Additional information

To 60th birthday anniversary of Prof. Dr. Sergei Grudsky.

Research was supported by CONACYT, Mexico via the Projects 166141 and 222478.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravchenko, V.V., Torba, S.M. Analytic approximation of transmutation operators and related systems of functions. Bol. Soc. Mat. Mex. 22, 389–429 (2016). https://doi.org/10.1007/s40590-016-0103-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-016-0103-0

Keywords

Mathematics Subject Classification

Navigation