Skip to main content

Advertisement

Log in

Insights on Rosetting Phenomenon in Plasmodium vivax Malaria

  • Parasitology (M Belen Cassera, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Information about rosettes in Plasmodium vivax infection is scarce. However, the understanding of this phenomenon is important for elucidating the pathobiology of Plasmodium spp. This review summarizes the advances in the knowledge of rosetting phenomenon in P. vivax malaria.

Recent Findings

In vitro and ex vivo studies seek to shed light on some aspects of rosetting in vivax malaria. The major efforts are to determine the purpose of this phenomenon and the elements involved in rosetting. Recent data reveal a receptor and suggest that specific components are involved in rosetting. Moreover, there is strong evidence supporting the role of rosettes as an immune evasion strategy.

Summary

Although there are many unknown aspects behind rosetting, recent findings have contributed to elucidating rosette formation mechanisms and have clarified its role and biological hallmarks. These findings reinforce that rosetting is important and understanding the underlying biology may help develop new strategies for malaria control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. WHO. World malaria report 2019. Geneva2019. p. 232.

  2. Lalremruata A, Magris M, Vivas-Martínez S, Koehler M, Esen M, Kempaiah P, et al. Natural infection of Plasmodium brasilianum in humans: man and monkey share quartan malaria parasites in the Venezuelan Amazon. EBioMedicine. 2015;2(9):1186–92. https://doi.org/10.1016/j.ebiom.2015.07.033.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ta TH, Hisam S, Lanza M, Jiram AI, Ismail N, Rubio JM. First case of a naturally acquired human infection with Plasmodium cynomolgi. Malar J. 2014;13:68. https://doi.org/10.1186/1475-2875-13-68.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brasil P, Zalis MG, de Pina-Costa A, Siqueira AM, Júnior CB, Silva S, et al. Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation. Lancet Glob Health. 2017;5(10):e1038–e46. https://doi.org/10.1016/S2214-109X(17)30333-9.

    Article  PubMed  Google Scholar 

  5. Howes RE, Battle KE, Mendis KN, Smith DL, Cibulskis RE, Baird JK, et al. Global epidemiology of Plasmodium vivax. Am J Trop Med Hyg. 2016;95(6 Suppl):15–34. https://doi.org/10.4269/ajtmh.16-0141.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Costa FT, Lopes SC, Albrecht L, Ataide R, Siqueira AM, Souza RM, et al. On the pathogenesis of Plasmodium vivax malaria: perspectives from the Brazilian field. Int J Parasitol. 2012;42(12):1099–105. S0020-7519(12)00221-4 [pii]. https://doi.org/10.1016/j.ijpara.2012.08.007.

    Article  PubMed  Google Scholar 

  7. Alexandre MA, Ferreira CO, Siqueira AM, Magalhães BL, Mourão MP, Lacerda MV, et al. Severe Plasmodium vivax malaria. Brazilian Amazon Emerg Infect Dis. 2010;16(10):1611–4. https://doi.org/10.3201/eid1610.100685.

    Article  PubMed  Google Scholar 

  8. Genton B, D'Acremont V, Rare L, Baea K, Reeder JC, Alpers MP, et al. Plasmodium vivax and mixed infections are associated with severe malaria in children: a prospective cohort study from Papua New Guinea. PLoS Med. 2008;5(6):e127. https://doi.org/10.1371/journal.pmed.0050127.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Aashish A, Manigandan G. Complicated vivax malaria, an often underestimated condition - case Report. J Fam Community Med. 2015;22(3):180–2. https://doi.org/10.4103/2230-8229.163040.

    Article  Google Scholar 

  10. Rahimi BA, Thakkinstian A, White NJ, Sirivichayakul C, Dondorp AM, Chokejindachai W. Severe vivax malaria: a systematic review and meta-analysis of clinical studies since 1900. Malar J. 2014;13:481. https://doi.org/10.1186/1475-2875-13-481.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chaikitgosiyakul S, Rijken MJ, Muehlenbachs A, Lee SJ, Chaisri U, Viriyavejakul P, et al. A morphometric and histological study of placental malaria shows significant changes to villous architecture in both Plasmodium falciparum and Plasmodium vivax infection. Malar J. 2014;13:4. https://doi.org/10.1186/1475-2875-13-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Naing C, Whittaker MA, Nyunt Wai V, Mak JW. Is Plasmodium vivax malaria a severe malaria?: a systematic review and meta-analysis. PLoS Negl Trop Dis. 2014;8(8):e3071. https://doi.org/10.1371/journal.pntd.0003071.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, Karyana M, et al. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua. Indonesia PLoS Med. 2008;5(6):e128. https://doi.org/10.1371/journal.pmed.0050128.

    Article  PubMed  Google Scholar 

  14. David PH, Handunnetti SM, Leech JH, Gamage P, Mendis KN. Rosetting: a new cytoadherence property of malaria-infected erythrocytes. Am J Trop Med Hyg. 1988;38(2):289–97. https://doi.org/10.4269/ajtmh.1988.38.289.

    Article  CAS  PubMed  Google Scholar 

  15. MacPherson GG, Warrell MJ, White NJ, Looareesuwan S, Warrell DA. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol. 1985;119(3):385–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chattopadhyay R, Taneja T, Chakrabarti K, Pillai CR, Chitnis CE. Molecular analysis of the cytoadherence phenotype of a Plasmodium falciparum field isolate that binds intercellular adhesion molecule-1. Mol Biochem Parasitol. 2004;133(2):255–65. https://doi.org/10.1016/j.molbiopara.2003.08.014.

    Article  CAS  PubMed  Google Scholar 

  17. Claessens A, Adams Y, Ghumra A, Lindergard G, Buchan CC, Andisi C, et al. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells. Proc Natl Acad Sci U S A. 2012;109(26):E1772–81. https://doi.org/10.1073/pnas.1120461109.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sampath S, Brazier AJ, Avril M, Bernabeu M, Vigdorovich V, Mascarenhas A, et al. Plasmodium falciparum adhesion domains linked to severe malaria differ in blockade of endothelial protein C receptor. Cell Microbiol. 2015;17(12):1868–82. https://doi.org/10.1111/cmi.12478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reeder JC, Cowman AF, Davern KM, Beeson JG, Thompson JK, Rogerson SJ, et al. The adhesion of Plasmodium falciparum-infected erythrocytes to chondroitin sulfate A is mediated by P. falciparum erythrocyte membrane protein 1. Proc Natl Acad Sci U S A. 1999;96(9):5198–202. https://doi.org/10.1073/pnas.96.9.5198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Buffet PA, Gamain B, Scheidig C, Baruch D, Smith JD, Hernandez-Rivas R, et al. Plasmodium falciparum domain mediating adhesion to chondroitin sulfate A: a receptor for human placental infection. Proc Natl Acad Sci U S A. 1999;96(22):12743–8. https://doi.org/10.1073/pnas.96.22.12743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trimnell AR, Kraemer SM, Mukherjee S, Phippard DJ, Janes JH, Flamoe E, et al. Global genetic diversity and evolution of var genes associated with placental and severe childhood malaria. Mol Biochem Parasitol. 2006;148(2):169–80. https://doi.org/10.1016/j.molbiopara.2006.03.012.

    Article  CAS  PubMed  Google Scholar 

  22. Higgins MK. The structure of a chondroitin sulfate-binding domain important in placental malaria. J Biol Chem. 2008;283(32):21842–6. https://doi.org/10.1074/jbc.C800086200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fernandez V, Treutiger CJ, Nash GB, Wahlgren M. Multiple adhesive phenotypes linked to rosetting binding of erythrocytes in Plasmodium falciparum malaria. Infect Immun. 1998;66(6):2969–75. https://doi.org/10.1128/IAI.66.6.2969-2975.1998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ribacke U, Moll K, Albrecht L, Ahmed Ismail H, Normark J, Flaberg E, et al. Improved in vitro culture of Plasmodium falciparum permits establishment of clinical isolates with preserved multiplication, invasion and rosetting phenotypes. PLoS One. 2013;8(7):e69781. https://doi.org/10.1371/journal.pone.0069781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carvalho BO, Lopes SC, Nogueira PA, Orlandi PP, Bargieri DY, Blanco YC, et al. On the cytoadhesion of Plasmodium vivax-infected erythrocytes. J Infect Dis. 2010;202(4):638–47. https://doi.org/10.1086/654815.

    Article  PubMed  Google Scholar 

  26. Fernandez-Becerra C, Bernabeu M, Castellanos A, Correa BR, Obadia T, Ramirez M, et al. Spleen-dependent genes encode antigens associated with cytoadhesion and clinical protection. Proc Natl Acad Sci U S A. 2020;117(23):13056–65. https://doi.org/10.1073/pnas.1920596117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lacerda MV, Fragoso SC, Alecrim MG, Alexandre MA, Magalhães BM, Siqueira AM, et al. Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin Infect Dis. 2012;55(8):e67–74. https://doi.org/10.1093/cid/cis615.

    Article  PubMed  Google Scholar 

  28. Lopes SC, Albrecht L, Carvalho BO, Siqueira AM, Thomson-Luque R, Nogueira PA, et al. Paucity of Plasmodium vivax mature schizonts in peripheral blood is associated with their increased cytoadhesive potential. J Infect Dis. 2014;209(9):1403–7. https://doi.org/10.1093/infdis/jiu018.

    Article  PubMed  Google Scholar 

  29. •• Lee WC, Malleret B, Lau YL, Mauduit M, Fong MY, Cho JS, et al. Glycophorin C (CD236R) mediates vivax malaria parasite rosetting to normocytes. Blood. 2014;123(18):e100–9. https://doi.org/10.1182/blood-2013-12-541698. This article identified glycophorin C as a receptor at non-infected red blood cells for P. vivax rosettes.

  30. •• Albrecht L, Lopes SCP, da Silva ABIE, Barbosa V, Almeida RP, Siqueira AM, et al. Rosettes integrity protects Plasmodium vivax of being phagocytized. Sci Rep. 2020;10(1):16706. https://doi.org/10.1038/s41598-020-73713-w. This article showed that P. vivax parasites forming a rosette are less likely phagocyted.

  31. • Marín-Menéndez A, Bardají A, Martínez-Espinosa FE, Bôtto-Menezes C, Lacerda MV, Ortiz J, et al. Rosetting in Plasmodium vivax: a cytoadhesion phenotype associated with anaemia. PLoS Negl Trop Dis. 2013;7(4):e2155. https://doi.org/10.1371/journal.pntd.0002155. This article associated P. vivax rosettes with anemia in pregnant women.

  32. Udomsanpetch R, Thanikkul K, Pukrittayakamee S, White NJ. Rosette formation by Plasmodium vivax. Trans R Soc Trop Med Hyg. 1995;89(6):635–7. https://doi.org/10.1016/0035-9203(95)90422-0.

    Article  CAS  PubMed  Google Scholar 

  33. McQuaid F, Rowe JA. Rosetting revisited: a critical look at the evidence for host erythrocyte receptors in. Parasitology. 2020;147(1):1–11. https://doi.org/10.1017/S0031182019001288.

    Article  CAS  PubMed  Google Scholar 

  34. Trager W, Jensen JB. Human malaria parasites in continuous culture. Science. 1976;193(4254):673–5. https://doi.org/10.1126/science.781840.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang R, Lee WC, Lau YL, Albrecht L, Lopes SC, Costa FT, et al. Rheopathologic consequence of Plasmodium vivax rosette formation. PLoS Negl Trop Dis. 2016;10(8):e0004912. https://doi.org/10.1371/journal.pntd.0004912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wahlgren M. Antigens and antibodies involved in humoral immunity to Plasmodium falciparum. Karolinska Institutet; 1986.

    Google Scholar 

  37. Udomsangpetch R, Wåhlin B, Carlson J, Berzins K, Torii M, Aikawa M, et al. Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes. J Exp Med. 1989;169(5):1835–40. https://doi.org/10.1084/jem.169.5.1835.

    Article  CAS  PubMed  Google Scholar 

  38. Handunnetti SM, David PH, Perera KL, Mendis KN. Uninfected erythrocytes form “rosettes” around Plasmodium falciparum infected erythrocytes. Am J Trop Med Hyg. 1989;40(2):115–8. https://doi.org/10.4269/ajtmh.1989.40.115.

    Article  CAS  PubMed  Google Scholar 

  39. Angus BJ, Thanikkul K, Silamut K, White NJ, Udomsangpetch R. Short report: rosette formation in Plasmodium ovale infection. Am J Trop Med Hyg. 1996;55(5):560–1. https://doi.org/10.4269/ajtmh.1996.55.560.

    Article  CAS  PubMed  Google Scholar 

  40. Lowe BS, Mosobo M, Bull PC. All four species of human malaria parasites form rosettes. Trans R Soc Trop Med Hyg. 1998;92(5):526. https://doi.org/10.1016/s0035-9203(98)90901-4.

    Article  CAS  PubMed  Google Scholar 

  41. Nash GB, Cooke BM, Carlson J, Wahlgren M. Rheological properties of rosettes formed by red blood cells parasitized by Plasmodium falciparum. Br J Haematol. 1992;82(4):757–63. https://doi.org/10.1111/j.1365-2141.1992.tb06955.x.

    Article  CAS  PubMed  Google Scholar 

  42. Rowe A, Obeiro J, Newbold CI, Marsh K. Plasmodium falciparum rosetting is associated with malaria severity in Kenya. Infect Immun. 1995;63(6):2323–6. https://doi.org/10.1128/IAI.63.6.2323-2326.1995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mayor A, Hafiz A, Bassat Q, Rovira-Vallbona E, Sanz S, Machevo S, et al. Association of severe malaria outcomes with platelet-mediated clumping and adhesion to a novel host receptor. PLoS One. 2011;6(4):e19422. https://doi.org/10.1371/journal.pone.0019422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carlson J, Helmby H, Hill AV, Brewster D, Greenwood BM, Wahlgren M. Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet. 1990;336(8729):1457–60. https://doi.org/10.1016/0140-6736(90)93174-n.

    Article  CAS  PubMed  Google Scholar 

  45. Chen Q, Schlichtherle M, Wahlgren M. Molecular aspects of severe malaria. Clin Microbiol Rev. 2000;13(3):439–50. https://doi.org/10.1128/cmr.13.3.439-450.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. O'Donnell RA, Saul A, Cowman AF, Crabb BS. Functional conservation of the malaria vaccine antigen MSP-119across distantly related Plasmodium species. Nat Med. 2000;6(1):91–5. https://doi.org/10.1038/71595.

    Article  CAS  PubMed  Google Scholar 

  47. Doumbo OK, Thera MA, Koné AK, Raza A, Tempest LJ, Lyke KE, et al. High levels of Plasmodium falciparum rosetting in all clinical forms of severe malaria in African children. Am J Trop Med Hyg. 2009;81(6):987–93. https://doi.org/10.4269/ajtmh.2009.09-0406.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chotivanich KT, Pukrittayakamee S, Simpson JA, White NJ, Udomsangpetch R. Characteristics of Plasmodium vivax-infected erythrocyte rosettes. Am J Trop Med Hyg. 1998;59(1):73–6. https://doi.org/10.4269/ajtmh.1998.59.73.

    Article  CAS  PubMed  Google Scholar 

  49. Pathirana SL, Alles HK, Bandara S, Phone-Kyaw M, Perera MK, Wickremasinghe AR, et al. ABO-blood-group types and protection against severe, Plasmodium falciparum malaria. Ann Trop Med Parasitol. 2005;99(2):119–24. https://doi.org/10.1179/136485905X19946.

    Article  CAS  PubMed  Google Scholar 

  50. Rowe JA, Handel IG, Thera MA, Deans AM, Lyke KE, Koné A, et al. Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting. Proc Natl Acad Sci U S A. 2007;104(44):17471–6. https://doi.org/10.1073/pnas.0705390104.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Deepa AVA, Rameshkumar K, Ross C. ABO blood groups and malaria related clinical outcome. J Vector Borne Dis. 2011;48(1):7–11.

    CAS  PubMed  Google Scholar 

  52. Moll K, Palmkvist M, Ch'ng J, Kiwuwa MS, Wahlgren M. Evasion of immunity to Plasmodium falciparum: rosettes of blood group A impair recognition of PfEMP1. PLoS One. 2015;10(12):e0145120. https://doi.org/10.1371/journal.pone.0145120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Carlson J, Wahlgren M. Plasmodium falciparum erythrocyte rosetting is mediated by promiscuous lectin-like interactions. J Exp Med. 1992;176(5):1311–7. https://doi.org/10.1084/jem.176.5.1311.

    Article  CAS  PubMed  Google Scholar 

  54. Vigan-Womas I, Guillotte M, Juillerat A, Hessel A, Raynal B, England P, et al. Structural basis for the ABO blood-group dependence of Plasmodium falciparum rosetting. PLoS Pathog. 2012;8(7):e1002781. https://doi.org/10.1371/journal.ppat.1002781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Barragan A, Kremsner PG, Wahlgren M, Carlson J. Blood group A antigen is a coreceptor in Plasmodium falciparum rosetting. Infect Immun. 2000;68(5):2971–5. https://doi.org/10.1128/iai.68.5.2971-2975.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wahlgren M, Carlson J, Udomsangpetch R, Perlmann P. Why do Plasmodium falciparumm-infected erythrocytes form spontaneous erythrocyte rosettes? Parasitol Today. 1989;5(6):183–5. https://doi.org/10.1016/0169-4758(89)90141-5.

    Article  CAS  PubMed  Google Scholar 

  57. Rowe JA, Obiero J, Marsh K, Raza A. Short report: positive correlation between rosetting and parasitemia in Plasmodium falciparum clinical isolates. Am J Trop Med Hyg. 2002;66(5):458–60. https://doi.org/10.4269/ajtmh.2002.66.458.

    Article  PubMed  Google Scholar 

  58. Clough B, Atilola FA, Pasvoi G. The role of rosetting in the multiplication of Plasmodium falciparum: rosette formation neither enhances nor targets parasite invasion into uninfected red cells. Br J Haematol. 1998;100(1):99–104. https://doi.org/10.1046/j.1365-2141.1998.00534.x.

    Article  CAS  PubMed  Google Scholar 

  59. Deans AM, Rowe JA. Plasmodium falciparum: rosettes do not protect merozoites from invasion-inhibitory antibodies. Exp Parasitol. 2006;112(4):269–73. https://doi.org/10.1016/j.exppara.2005.11.007.

    Article  CAS  PubMed  Google Scholar 

  60. •• Lee WC, Russell B, Sobota RM, Ghaffar K, Howland SW, Wong ZX, et al. -infected erythrocytes induce secretion of IGFBP7 to form type II rosettes and escape phagocytosis. Elife. 2020;9. doi: https://doi.org/10.7554/eLife.51546. This article identified IGFBP7 as an important component for type II rosettes.

  61. Chen Q, Barragan A, Fernandez V, Sundström A, Schlichtherle M, Sahlén A, et al. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med. 1998;187(1):15–23. https://doi.org/10.1084/jem.187.1.15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Goel S, Palmkvist M, Moll K, Joannin N, Lara P, Akhouri RR, et al. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat Med. 2015;21(4):314–7. https://doi.org/10.1038/nm.3812.

    Article  CAS  PubMed  Google Scholar 

  63. Niang M, Bei AK, Madnani KG, Pelly S, Dankwa S, Kanjee U, et al. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe. 2014;16(1):81–93. https://doi.org/10.1016/j.chom.2014.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rowe JA, Moulds JM, Newbold CI, Miller LH. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997;388(6639):292–5. https://doi.org/10.1038/40888.

    Article  CAS  PubMed  Google Scholar 

  65. Normark J, Nilsson D, Ribacke U, Winter G, Moll K, Wheelock CE, et al. PfEMP1-DBL1alpha amino acid motifs in severe disease states of Plasmodium falciparum malaria. Proc Natl Acad Sci U S A. 2007;104(40):15835–40. https://doi.org/10.1073/pnas.0610485104.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Handunnetti SM, van Schravendijk MR, Hasler T, Barnwell JW, Greenwalt DE, Howard RJ. Involvement of CD36 on erythrocytes as a rosetting receptor for Plasmodium falciparum-infected erythrocytes. Blood. 1992;80(8):2097–104.

    Article  CAS  Google Scholar 

  67. Rowe A, Berendt AR, Marsh K, Newbold CI. Plasmodium falciparum: a family of sulphated glycoconjugates disrupts erythrocyte rosettes. Exp Parasitol. 1994;79(4):506–16. https://doi.org/10.1006/expr.1994.1111.

    Article  CAS  PubMed  Google Scholar 

  68. Alam MS, Zeeshan M, Rathore S, Sharma YD. Multiple Plasmodium vivax proteins of Pv-fam-a family interact with human erythrocyte receptor band 3 and have a role in red cell invasion. Biochem Biophys Res Commun. 2016;478(3):1211–6. https://doi.org/10.1016/j.bbrc.2016.08.096.

    Article  CAS  PubMed  Google Scholar 

  69. Zeeshan M, Tyagi RK, Tyagi K, Alam MS, Sharma YD. Host-parasite interaction: selective Pv-fam-a family proteins of Plasmodium vivax bind to a restricted number of human erythrocyte receptors. J Infect Dis. 2015;211(7):1111–20. https://doi.org/10.1093/infdis/jiu558.

    Article  CAS  PubMed  Google Scholar 

  70. Tyagi K, Gupta D, Saini E, Choudhary S, Jamwal A, Alam MS, et al. Recognition of human erythrocyte receptors by the tryptophan-rich antigens of monkey malaria parasite Plasmodium knowlesi. PLoS One. 2015;10(9):e0138691. https://doi.org/10.1371/journal.pone.0138691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bernabeu M, Lopez FJ, Ferrer M, Martin-Jaular L, Razaname A, Corradin G, et al. Functional analysis of Plasmodium vivax VIR proteins reveals different subcellular localizations and cytoadherence to the ICAM-1 endothelial receptor. Cell Microbiol. 2012;14(3):386–400. https://doi.org/10.1111/j.1462-5822.2011.01726.x.

    Article  CAS  PubMed  Google Scholar 

  72. Treutiger CJ, Scholander C, Carlson J, McAdam KP, Raynes JG, Falksveden L, et al. Rouleaux-forming serum proteins are involved in the rosetting of Plasmodium falciparum-infected erythrocytes. Exp Parasitol. 1999;93(4):215–24. https://doi.org/10.1006/expr.1999.4454.

    Article  CAS  PubMed  Google Scholar 

  73. Scholander C, Treutiger CJ, Hultenby K, Wahlgren M. Novel fibrillar structure confers adhesive property to malaria-infected erythrocytes. Nat Med. 1996;2(2):204–8. https://doi.org/10.1038/nm0296-204.

    Article  CAS  PubMed  Google Scholar 

  74. Ghumra A, Semblat JP, McIntosh RS, Raza A, Rasmussen IB, Braathen R, et al. Identification of residues in the Cmu4 domain of polymeric IgM essential for interaction with Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). J Immunol. 2008;181(3):1988–2000. https://doi.org/10.4049/jimmunol.181.3.1988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ghumra A, Semblat JP, Ataide R, Kifude C, Adams Y, Claessens A, et al. Induction of strain-transcending antibodies against Group A PfEMP1 surface antigens from virulent malaria parasites. PLoS Pathog. 2012;8(4):e1002665. https://doi.org/10.1371/journal.ppat.1002665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rasti N, Namusoke F, Chêne A, Chen Q, Staalsoe T, Klinkert MQ, et al. Nonimmune immunoglobulin binding and multiple adhesion characterize Plasmodium falciparum-infected erythrocytes of placental origin. Proc Natl Acad Sci U S A. 2006;103(37):13795–800. https://doi.org/10.1073/pnas.0601519103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Flick K, Scholander C, Chen Q, Fernandez V, Pouvelle B, Gysin J, et al. Role of nonimmune IgG bound to PfEMP1 in placental malaria. Science. 2001;293(5537):2098–100. https://doi.org/10.1126/science.1062891.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank to Liam King for proofreading the article and Wagner Nagib for assistance in designing the illustration in Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letusa Albrecht.

Ethics declarations

Conflict of Interest

Najara C. Bittencourt, Letícia P. Bertolla, and Letusa Albrecht declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Parasitology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bittencourt, N.C., Bertolla, L.P. & Albrecht, L. Insights on Rosetting Phenomenon in Plasmodium vivax Malaria. Curr Clin Micro Rpt 8, 1–7 (2021). https://doi.org/10.1007/s40588-020-00155-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-020-00155-3

Keywords

Navigation