Skip to main content

Advertisement

Log in

Genetic Tools for Investigating Mucorales Fungal Pathogenesis

  • Mycology (M Noverr, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract or Summary

Purpose of Review

Mucormycosis is an emerging opportunistic fungal infection whose causative agents are found within the Mucorales family. A recent increase in immunocompromised cohorts with solid organ transplants, diabetes mellitus, and other medical conditions have resulted in increased fungal infections including mucormycosis. Our current knowledge about Mucoralean fungi is in its infancy compared to other fungal pathogens, which may be due to lack of robust genetic tools for Mucorales. In this review, we summarize recent advances in genetic tools to study the two most prevalent and genetically amenable Mucoralean fungi, Mucor circinelloides and Rhizopus delemar.

Recent Findings

There have been advances made in the study of Mucorales family genetics. These findings include the construction of recyclable markers to manipulate the genome, as well as silencing vectors, and the adaptation of the CRISPR/Cas9 gene editing system.

Summary

We present how these genetic methods have been applied to understand basic biology, morphogenesis, pathogenesis, and host-pathogen interactions in the two Mucoralean fungi, M. circinelloides and R. delemar. With these advances in Mucorales, the opportunity to further understand the pathogenesis of these organisms is opened.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Lanternier F, Dannaoui E, Morizot G, Elie C, Garcia-Hermoso D, Huerre M, et al. A global analysis of mucormycosis in France: the RetroZygo study (2005-2007). Clin Infect Dis. 2012;54(suppl 1):S35–43.

    Article  PubMed  CAS  Google Scholar 

  2. Kauffman CA. Zygomycosis: reemergence of an old pathogen. Clin Infect Dis. 2004;39(4):588–90.

    Article  PubMed  Google Scholar 

  3. Chayakulkeeree M, Ghannoum M, Perfect J. Zygomycosis: the re-emerging fungal infection. Eur J Clin Microbiol Infect Dis. 2006;25(4):215–29.

    Article  PubMed  CAS  Google Scholar 

  4. Brown J. Zygomycosis: an emerging fungal infection. Am J Health Syst Pharm. 2005;62(24):2593–6.

    Article  PubMed  Google Scholar 

  5. Hoffmann K, Pawłowska J, Walther G, Wrzosek M, de Hoog GS, Benny GL, et al. The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia - Molecular Phylogeny and Evolution of Fungi. 2013;30(1):57–76. https://doi.org/10.3767/003158513X666259.

    Article  PubMed Central  CAS  Google Scholar 

  6. Spellberg B, Edwards J Jr, Ibrahim A. Novel perspectives on mucormycosis: pathophysiology, presentation, and management. Clin Microbiol Rev. 2005;18(3):556–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Roden MM, Zaoutis TE, Buchanan WL, Knudsen TA, Sarkisova TA, Schaufele RL, et al. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis. 2005;41(5):634–53.

    Article  PubMed  Google Scholar 

  8. Marr KA, Carter RA, Crippa F, Wald A, Corey L. Epidemiology and outcome of mould infections in hematopoietic stem cell transplant recipients. Clin Infect Dis. 2002;34(7):909–17.

    Article  PubMed  Google Scholar 

  9. Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP. Pathogenesis of mucormycosis. Clin Infect Dis. 2012;54(suppl 1):S16–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Wurster S, Thielen V, Weis P, Walther P, Elias J, Waaga-Gasser AM, et al. Mucorales spores induce a proinflammatory cytokine response in human mononuclear phagocytes and harbor no rodlet hydrophobins. Virulence. 2017;8(8):1708–18. https://doi.org/10.1080/21505594.2017.1342920.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Chamilos G, Ganguly D, Lande R, Gregorio J, Meller S, Goldman WE, et al. Generation of IL-23 producing dendritic cells (DCs) by airborne fungi regulates fungal pathogenicity via the induction of TH-17 responses. PLoS One. 2010;5(9):e12955. https://doi.org/10.1371/journal.pone.0012955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Neblett Fanfair R, Benedict K, Bos J, Bennett SD, Lo Y-C, Adebanjo T, et al. Necrotizing cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011. N Engl J Med. 2012;367(23):2214–25. https://doi.org/10.1056/NEJMoa1204781.

    Article  PubMed  CAS  Google Scholar 

  13. Ibrahim AS, Spellberg B. Zygomycetes as agents of infectious disease in humans. In: Heitman J, Filler SG, Edwards Jr JE, Mitchell AP, editors. Molecular principles of fungal pathogenesis. Washington, DC: ASM Press; 2006. p. 429–40.

    Google Scholar 

  14. Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev. 2000;13(2):236–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lanternier F, Sun H-Y, Ribaud P, Singh N, Kontoyiannis DP, Lortholary O. Mucormycosis in organ and stem cell transplant recipients. Clin Infect Dis. 2012;54(11):1–8.

    Article  Google Scholar 

  16. Kontoyiannis DP, Lewis RE. Invasive zygomycosis: update on pathogenesis, clinical manifestations, and management. Infect Dis Clin N Am. 2006;20(3):581–607.

    Article  Google Scholar 

  17. Lee SC, Li A, Calo S, Inoue M, Tonthat NK, Bain JM, et al. Calcineurin orchestrates dimorphic transitions, antifungal drug responses, and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides. Mol Microbiol. 2015;97(5):844–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Lee SC, Li A, Calo S, Heitman J. Calcineurin plays key roles in the dimorphic transition and virulence of the human pathogenic zygomycete Mucor circinelloides. PLoS Pathog. 2013;9:e1003625.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. •• Vellanki S, Navarro-Mendoza, M. I., Garcia, A. E., Murcia, L., Perez-Arques, C., Garre, V., Nicolas, F. E., & Lee, S. C.. Mucor circinelloides: growth, maintenance, and genetic manipulation. Curr Protoc Microbiol 2018(49). doi:https://doi.org/10.1002/cpmc.53. This paper includes the most current protocols utilized for the growth and maintenance of Mucor. Includes a variety of protocols ranging from simple growth methods of Mucor to genetic manipulation of Mucor.

  20. Silva F, Torres-Martínez S, Garre V. Distinct white collar-1 genes control specific light responses in Mucor circinelloides. Mol Microbiol. 2006;61(4):1023–37. https://doi.org/10.1111/j.1365-2958.2006.05291.x.

    Article  PubMed  CAS  Google Scholar 

  21. Corrochano LM, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo JM, et al. Expansion of signal transduction pathways in fungi by extensive genome duplication. Current biology: CB. 2016;26(12):1577–84. https://doi.org/10.1016/j.cub.2016.04.038.

    Article  PubMed  CAS  Google Scholar 

  22. Morin-Sardin S, Nodet P, Coton E, Jany J-L. Mucor: a Janus-faced fungal genus with human health impact and industrial applications. Fungal Biology Reviews. 2017;31(1):12–32. https://doi.org/10.1016/j.fbr.2016.11.002.

    Article  Google Scholar 

  23. Ma L-J, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, et al. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet. 2009;5(7):e1000549. https://doi.org/10.1371/journal.pgen.1000549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. •• Garcia A, Adedoyin G, Heitman J, Lee SC. Construction of a recyclable genetic marker and serial gene deletions in the human pathogenic mucorales Mucor circinelloides. G3: Genes|Genomes|Genetics. 2017;7(7):2047–54. https://doi.org/10.1534/g3.117.041095. Development of the first recyclable marker system for Mucor. This tool opens the opportunity to achieve serial gene deletion, which was not previously possible.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Roncero MIG, Jepsen LP, Strøman P, van Heeswijck R. Characterization of a leuA gene and an ARS element from Mucor circinelloides. Gene. 1989;84(2):335–43.

    Article  PubMed  CAS  Google Scholar 

  26. Skory CD, Ibrahim AS. Native and modified lactate dehydrogenase expression in a fumaric acid producing isolate Rhizopus oryzae 99-880. Curr Genet. 2007;52(1):23–33. https://doi.org/10.1007/s00294-007-0135-0.

    Article  PubMed  CAS  Google Scholar 

  27. Velayos A, López-Matas MA, Ruiz-Hidalgo MJ, Eslava AP. Complementation analysis of carotenogenic mutants of Mucor circinelloides. Fungal Genet Biol. 1997;22(1):19–27. https://doi.org/10.1006/fgbi.1997.0998.

    Article  PubMed  CAS  Google Scholar 

  28. Rodríguez-Frómeta RA, Gutiérrez A, Torres-Martínez S, Garre V. Malic enzyme activity is not the only bottleneck for lipid accumulation in the oleaginous fungus Mucor circinelloides. Appl Microbiol Biotechnol. 2013;97(7):3063–72. https://doi.org/10.1007/s00253-012-4432-2.

  29. Lee SC, Heitman J. Sex in the Mucoralean fungi. Mycoses. 2014;57(s3):18–24. https://doi.org/10.1111/myc.12244.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Patino-Medina JA, Maldonado-Herrera G, Perez-Arques C, Alejandre-Castaneda V, Reyes-Mares NY, Valle-Maldonado MI, et al. Control of morphology and virulence by ADP-ribosylation factors (Arf) in Mucor circinelloides. Curr Genet. 2017; https://doi.org/10.1007/s00294-017-0798-0.

  31. Perina D, Mikoč A, Ahel J, Ćetković H, Žaja R, Ahel I. Distribution of protein poly(ADP-ribosyl)ation systems across all domains of life. DNA Repair. 2014;23:4–16. https://doi.org/10.1016/j.dnarep.2014.05.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Skory C. Homologous recombination and double-strand break repair in the transformation of Rhizopus oryzae. Mol Gen Genomics. 2002;268(3):397–406. https://doi.org/10.1007/s00438-002-0760-8.

  33. Ibrahim AS, Gebremariam T, Lin L, Luo G, Husseiny MI, Skory CD, et al. The high affinity iron permease is a key virulence factor required for Rhizopus oryzae pathogenesis. Mol Microbiol. 2010;77(3):587–604. https://doi.org/10.1111/j.1365-2958.2010.07234.x.

  34. Corrochano Luis M, Kuo A, Marcet-Houben M, Polaino S, Salamov A, Villalobos-Escobedo José M, et al. Expansion of signal transduction pathways in fungi by extensive genome duplication. Curr Biol. 2016;26(12):1577–84. https://doi.org/10.1016/j.cub.2016.04.038.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Wilson BR, Davis D, Enloe BM, Mitchell AP. A recyclable Candida albicans URA3 cassette for PCR product-directed gene disruptions. Yeast. 2000;16(1):65–70. https://doi.org/10.1002/(SICI)1097-0061(20000115)16:1<65::AID-YEA508>3.0.CO;2-M.

    Article  PubMed  CAS  Google Scholar 

  36. Nicolás FE, Santiago TM. M. RVR. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. EMBO J. 2003;22(15):3983–91.

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Haro JP, Calo S, Cervantes M, Nicolás FE, Torres-Martínez S, Ruiz-Vázquez RM. A single dicer gene is required for efficient gene silencing associated with two classes of small antisense RNAs in Mucor circinelloides. Eukaryot Cell. 2009;8(10):1486–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Billmyre RB, Calo S, Feretzaki M, Wang X, Heitman J. RNAi function, diversity, and loss in the fungal kingdom. Chromosom Res. 2013;21(6–7):561–72. https://doi.org/10.1007/s10577-013-9388-2.

    Article  CAS  Google Scholar 

  39. Cervantes M, Vila A, Nicolás FE, Moxon S, de Haro JP, Dalmay T, et al. A single argonaute gene participates in exogenous and endogenous RNAi and controls cellular functions in the basal fungus Mucor circinelloides. PLoS One. 2013;8(7):e69283. https://doi.org/10.1371/journal.pone.0069283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Nicolas FE, Moxon S, de Haro JP, Calo S, Grigoriev IV, Torres-Martinez S, et al. Endogenous short RNAs generated by dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic Acids Res. 2010;38(16):5535–41. https://doi.org/10.1093/nar/gkq301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Nicolás FE, Torres-Martínez S, Ruiz-Vázquez RM. Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. EMBO J. 2003;22(15):3983–91. https://doi.org/10.1093/emboj/cdg384.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nicolás F, Ruiz-Vázquez R. Functional diversity of RNAi-associated sRNAs in fungi. Int J Mol Sci. 2013;14(8):15348–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Calo S, Nicolás FE, Vila A, Torres-Martínez S, Ruiz-Vázquez RM. Two distinct RNA-dependent RNA polymerases are required for initiation and amplification of RNA silencing in the basal fungus Mucor circinelloides. Mol Microbiol. 2012;83(2):379–94. https://doi.org/10.1111/j.1365-2958.2011.07939.x.

    Article  PubMed  CAS  Google Scholar 

  44. Trieu TA, Calo S, Nicolás FE, Vila A, Moxon S, Dalmay T et al. A non-canonical RNA silencing pathway promotes mRNA degradation in basal fungi. PLoS Genet. 2015;11(4):e1005168. https://doi.org/10.1371/journal.pgen.1005168.

  45. Calo S, Shertz-Wall C, Lee SC, Bastidas RJ, Nicolás FE, Granek JA, et al. Antifungal drug resistance evokedvia RNAi-dependent epimutations. Nature. 2014;513(7519):555–8. https://doi.org/10.1038/nature13575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nicolás FE, Vila A, Moxon S, Cascales MD, Torres-Martínez S, Ruiz-Vázquez RM, et al. The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides. BMC Genomics. 2015;16(1):237. https://doi.org/10.1186/s12864-015-1443-2.

    Article  PubMed  PubMed Central  Google Scholar 

  47. • Trieu TA, Navarro-Mendoza MI, Pérez-Arques C, Sanchis M, Capilla J, Navarro-Rodriguez P, et al. RNAi-based functional genomics identifies new virulence determinants in mucormycosis. PLoS Pathog. 2017;13(1):e1006150. https://doi.org/10.1371/journal.ppat.1006150. This work shows the development of an RNAi based genomic platform to study virulence in Mucor. It led to the identification of two genes that present themselves as promising targets for future antifungals.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Gheinani AH, Jahromi NH, Feuk-Lagerstedt E, Taherzadeh MJ. RNA silencing of lactate dehydrogenase gene in Rhizopus oryzae. Journal of RNAi and Gene Silencing: An International Journal of RNA and Gene Targeting Research. 2011;7:443–8.

    CAS  Google Scholar 

  49. Liu M, Lin L, Gebremariam T, Luo G, Skory CD, French SW, et al. Fob1 and Fob2 proteins are virulence determinants of Rhizopus oryzae via facilitating iron uptake from ferrioxamine. PLoS Pathog. 2015;11(5):e1004842. https://doi.org/10.1371/journal.ppat.1004842.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gebremariam T, Liu M, Luo G, Bruno V, Phan QT, Waring AJ, et al. CotH3 mediates fungal invasion of host cells during mucormycosis. J Clin Invest. 2014;124(1):237–50. https://doi.org/10.1172/JCI71349.

    Article  PubMed  CAS  Google Scholar 

  51. Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119–28. https://doi.org/10.1016/j.biochi.2015.03.025.

    Article  PubMed  CAS  Google Scholar 

  52. Marraffini LA. The CRISPR-Cas system of Streptococcus pyogenes: function and applications. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes : basic biology to clinical manifestations. Oklahoma City (OK): University of Oklahoma Health Sciences Center; 2016.

    Google Scholar 

  53. Bortesi L, Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 2015;33(1):41–52. https://doi.org/10.1016/j.biotechadv.2014.12.006.

    Article  PubMed  CAS  Google Scholar 

  54. Zheng YM, Lin FL, Gao H, Zou G, Zhang JW, Wang GQ, et al. Development of a versatile and conventional technique for gene disruption in filamentous fungi based on CRISPR-Cas9 technology. Sci Rep. 2017;7(1):9250. https://doi.org/10.1038/s41598-017-10052-3.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Qin H, Xiao H, Zou G, Zhou Z, Zhong J-J. CRISPR-Cas9 assisted gene disruption in the higher fungus Ganoderma species. Process Biochem. 2017;56:57–61. https://doi.org/10.1016/j.procbio.2017.02.012.

    Article  CAS  Google Scholar 

  56. Fuller KK, Chen S, Loros JJ, Dunlap JC. Development of the CRISPR/Cas9 system for targeted gene disruption in Aspergillus fumigatus. Eukaryot Cell. 2015;14(11):1073–80. https://doi.org/10.1128/EC.00107-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Shi T-Q, Liu G-N, Ji R-Y, Shi K, Song P, Ren L-J, et al. CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol. 2017;101(20):7435–43. https://doi.org/10.1007/s00253-017-8497-9.

    Article  PubMed  CAS  Google Scholar 

  58. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. https://doi.org/10.1038/nprot.2013.143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Ryan DE, Taussig D, Steinfeld I, Phadnis SM, Lunstad BD, Singh M, et al. Improving CRISPR–Cas specificity with chemical modifications in single-guide RNAs. Nucleic Acids Res. 2018;46(2):792–803. https://doi.org/10.1093/nar/gkx1199.

    Article  PubMed  Google Scholar 

  60. Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, et al. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett. 2016;38(4):637–42. https://doi.org/10.1007/s10529-015-2015-x.

    Article  PubMed  CAS  Google Scholar 

  61. Kuivanen J, Wang Y-MJ, Richard P. Engineering aspergillus Niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb Cell Factories. 2016;15(1):210. https://doi.org/10.1186/s12934-016-0613-5.

    Article  Google Scholar 

  62. Liu R, Chen L, Jiang Y, Zhou Z, Zou G. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discovery. 2015;1:15007. https://doi.org/10.1038/celldisc.2015.7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Matsu-ura T, Baek M, Kwon J, Hong C. Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biology and Biotechnology. 2015;2(1):4. https://doi.org/10.1186/s40694-015-0015-1.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Baldin C, Soliman S, Jeon H, Skory C, Edwards J, Ibrahim A. Optimization of the CRISPR/Cas9 system to manipulate gene function in Rhizopus delemar. Open Forum Infectious Diseases. 2017;4(Suppl 1):S116-S. https://doi.org/10.1093/ofid/ofx163.136.

    Article  Google Scholar 

  65. • Nagy G, Szebenyi C, Csernetics A, Vaz AG, Toth EJ, Vagvolgyi C, et al. Development of a plasmid free CRISPR-Cas9 system for the genetic modification of Mucor circinelloides. Sci Rep. 2017;7(1):16800. https://doi.org/10.1038/s41598-017-17118-2. Depicts the first implementation of the CRISPR-Cas9 system for genetic manipulation of Mucor.

  66. van Heeswijck R, Roncero MIG. High frequency transformation of Mucor with recombinant plasmid DNA. Carlsb Res Commun. 1984;49(7):691–702. https://doi.org/10.1007/bf02907500.

    Article  Google Scholar 

  67. Velayos-Baeza A, Blasco JL, Alvarez MI, Iturriaga E, Eslava AP. Blue-light regulation of phytoene dehydrogenase (carB) gene expression in Mucor circinelloides. Planta. 2000;210(6):938–946. https://doi.org/10.1007/s004250050701

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Chan Lee.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Mycology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, A., Vellanki, S. & Lee, S.C. Genetic Tools for Investigating Mucorales Fungal Pathogenesis. Curr Clin Micro Rpt 5, 173–180 (2018). https://doi.org/10.1007/s40588-018-0097-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-018-0097-7

Keywords

Navigation