Skip to main content

Advertisement

Log in

HIV Dynamics With Immune Responses: Perspectives From Mathematical Modeling

  • Virology (A Nicola, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Human immunodeficiency virus (HIV) has infected over 36 million individuals worldwide and presents a tremendous public health concern, yet much remains unknown about the effect of immune responses on infection. In this review, we discuss the current status of mathematical modeling of HIV-immune system dynamics and how advances in modeling approaches have contributed to our understanding of the role of immune responses in virus infection.

Recent Findings

Recent advances provide important quantitative findings about CD8+ T cell and antibody responses. Specifically, these models explain important dynamical features such as the intracellular eclipse phase, and they estimate immune escape rates, the timing of MHC downregulation, and the proportion of virus in antibody-viral complexes.

Summary

Models of HIV-immune system dynamics, validated with experimental data, advance our quantitative understanding of infection and can generate hypotheses for further experiments. Greater insight on immune responses in HIV infection dynamics can lead to the development of vaccines and ultimately a cure for this infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance •• Of major importance

  1. Perelson AS, Ribeiro RM. Modeling the within-host dynamics of HIV infection. BMC Biol. 2013;11:96.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Alizon S, Magnus C. Modelling the course of an HIV infection: insights from ecology and evolution. Viruses. 2012;4:1984–2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. De Boer RJ, Perelson AS. Target cell limited and immune control models of HIV infection: a comparison. J Theor Biol. 1998;190:201–14.

    Article  PubMed  Google Scholar 

  4. Padmanabhan P, Dixit NM. Models of viral population dynamics. Curr Top Microbiol Immunol. 2016;392:277–302.

    PubMed  Google Scholar 

  5. Perelson AS. Modelling viral and immune system dynamics. Nat Rev Immunol. 2002;2:28–36.

    Article  CAS  PubMed  Google Scholar 

  6. Wodarz D. Modeling T cell responses to antigenic challenge. J Pharmacokinet Pharmacodyn. 2014;41:415–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jin X, Bauer DE, Tuttleton SE, Lewin S, Gettie A, et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. J Exp Med. 1999;189:991–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matano T, Shibata R, Siemon C, Connors M, Lane HC, et al. Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J Virol. 1998;72:164–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmitz JE, Johnson RP, McClure HM, Manson KH, Wyand MS, et al. Effect of CD8+ lymphocyte depletion on virus containment after simian immunodeficiency virus SIVmac251 challenge of live attenuated SIVmac239delta3-vaccinated rhesus macaques. J Virol. 2005;79:8131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schmitz JE, Kuroda MJ, Santra S, Sasseville VG, Simon MA, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science. 1999;283:857–60.

    Article  CAS  PubMed  Google Scholar 

  11. Regoes RR, Antia R, Garber DA, Silvestri G, Feinberg MB, et al. Roles of target cells and virus-specific cellular immunity in primary simian immunodeficiency virus infection. J Virol. 2004;78:4866–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kouyos RD, Gordon SN, Staprans SI, Silvestri G, Regoes RR. Similar impact of CD8+ T cell responses on early virus dynamics during SIV infections of rhesus macaques and sooty mangabeys. PLoS Comput Biol. 2010;6(8): e1000901. doi:10.1371/journal.pcbi.1000901.

  13. Davenport MP, Ribeiro RM, Perelson AS. Kinetics of virus-specific CD8+ T cells and the control of human immunodeficiency virus infection. J Virol. 2004;78:10096–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 2006;107:4781–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deeks SG, Walker BD. Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy. Immunity. 2007;27:406–16.

    Article  CAS  PubMed  Google Scholar 

  16. Elemans M, Thiebaut R, Kaur A, Asquith B. Quantification of the relative importance of CTL, B cell, NK cell, and target cell limitation in the control of primary SIV-infection. PLoS Comput Biol. 2011;7:e1001103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Althaus CL, De Boer RJ. Implications of CTL-mediated killing of HIV-infected cells during the non-productive stage of infection. PLoS One. 2011;6:e16468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Althaus CL, De Boer RJ. Impaired immune evasion in HIV through intracellular delays and multiple infection of cells. Proc Biol Sci. 2012;279:3003–10.

    Article  PubMed  PubMed Central  Google Scholar 

  19. van Deutekom HW, Wijnker G, de Boer RJ. The rate of immune escape vanishes when multiple immune responses control an HIV infection. J Immunol. 2013;191:3277–86.

    Article  PubMed  Google Scholar 

  20. Pawelek KA, Liu S, Pahlevani F, Rong L. A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data. Math Biosci. 2012;235:98–109.

    Article  PubMed  Google Scholar 

  21. Balamurali M, Petravic J, Loh L, Alcantara S, Kent SJ, et al. Does cytolysis by CD8+ T cells drive immune escape in HIV infection? J Immunol. 2010;185:5093–101.

    Article  CAS  PubMed  Google Scholar 

  22. Elemans M, Florins A, Willems L, Asquith B. Rates of CTL killing in persistent viral infection in vivo. PLoS Comput Biol. 2014;10:e1003534.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Elemans M, Seich Al Basatena NK, Klatt NR, Gkekas C, Silvestri G, et al. Why don’t CD8+ T cells reduce the lifespan of SIV-infected cells in vivo? PLoS Comput Biol. 2011;7:e1002200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klatt NR, Shudo E, Ortiz AM, Engram JC, Paiardini M, et al. CD8+ lymphocytes control viral replication in SIVmac239-infected rhesus macaques without decreasing the lifespan of productively infected cells. PLoS Pathog. 2010;6:e1000747.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Seich Al Basatena NK, Chatzimichalis K, Graw F, Frost SD, Regoes RR, et al. Can non-lytic CD8+ T cells drive HIV-1 escape? PLoS Pathog. 2013;9:e1003656.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wong JK, Strain MC, Porrata R, Reay E, Sankaran-Walters S, et al. In vivo CD8+ T-cell suppression of siv viremia is not mediated by CTL clearance of productively infected cells. PLoS Pathog. 2010;6:e1000748.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shridhar V, Chen Y, Gupta P. The CD8 antiviral factor (CAF) can suppress HIV-1 transcription from the long terminal repeat (LTR) promoter in the absence of elements upstream of the CATATAA box. Virol J. 2014;11:130.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bonneau KR, Ng S, Foster H, Choi KB, Berkhout B, et al. Derivation of infectious HIV-1 molecular clones with LTR mutations: sensitivity to the CD8+ cell noncytotoxic anti-HIV response. Virology. 2008;373:30–8.

    Article  CAS  PubMed  Google Scholar 

  29. Mosoian A, Teixeira A, Burns CS, Sander LE, Gusella GL, et al. Prothymosin-alpha inhibits HIV-1 via toll-like receptor 4-mediated type I interferon induction. Proc Natl Acad Sci U S A. 2010;107:10178–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeVico AL, Gallo RC. Control of HIV-1 infection by soluble factors of the immune response. Nat Rev Microbiol. 2004;2:401–13.

    Article  CAS  PubMed  Google Scholar 

  31. Wick WD, Yang OO. Biologically-directed modeling reflects cytolytic clearance of SIV-infected cells in vivo in macaques. PLoS One. 2012;7:e44778.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gadhamsetty S, Coorens T, de Boer RJ. Notwithstanding circumstantial alibis, cytotoxic T cells can be major killers of HIV-1-infected cells. J Virol. 2016;90:7066–83. The authors showed that mathematical modeling supports the direct killing mechanism of CTLs, and conclude that a CTL killing mechanism fits well when the model includes the eclipse phase before virus production and when killing is fast and varies over the life cycle of infected cells.

  33. Gadhamsetty S, Beltman JB, de Boer RJ. What do mathematical models tell us about killing rates during HIV-1 infection? Immunol Lett. 2015;168:1–6.

    Article  CAS  PubMed  Google Scholar 

  34. Conway JM, Perelson AS. Post-treatment control of HIV infection. Proc Natl Acad Sci U S A. 2015;112:5467–72. This study develops a mathematical model to describe the potential mechanism by which only a small fraction of patients exhibit post-treatment virus control. The study further gives a quantitative description of the roles of the CD8+ T cell response and latent reservoir size on patients showing viral rebound or the elite controller phenotype.

  35. Huang G, Takeuchi Y, Korobeinikov A. HIV evolution and progression of the infection to AIDS. J Theor Biol. 2012;307:149–59.

    Article  PubMed  Google Scholar 

  36. Ganusov VV, Neher RA, Perelson AS. Mathematical modeling of escape of HIV from cytotoxic T lymphocyte responses. J Stat Mech. 2013;2013:P01010.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kent SJ, Fernandez CS, Dale CJ, Davenport MP. Reversion of immune escape HIV variants upon transmission: insights into effective viral immunity. Trends Microbiol. 2005;13:243–6.

    Article  CAS  PubMed  Google Scholar 

  38. Wick WD, Yang OO. War in the body : the evolutionary arms race between HIV and the human immune system and the implications for vaccines. New York: Springer; 2013. 298 pages. The authors derived a formula to calculate the escape rate of HIV to predict the expected number of times per generation that a new HIV lineage with escape mutations emerge and evade extinction.

  39. Ganusov VV, Goonetilleke N, Liu MK, Ferrari G, Shaw GM, et al. Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection. J Virol. 2011;85:10518–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martyushev AP, Petravic J, Grimm AJ, Alinejad-Rokny H, Gooneratne SL, et al. Epitope-specific CD8+ T cell kinetics rather than viral variability determine the timing of immune escape in simian immunodeficiency virus infection. J Immunol. 2015;194:4112–21. The authors analyzed epitope-specific CD8+ T cells in pigtail macaques infected with SIV to look for patterns of escape mutations. They found that timing of escape is largely determined by the kinetics of epitope-specific T cells and not by the conservation or variability of an epitope.

  41. Kessinger TA, Perelson AS, Neher RA. Inferring HIV escape rates from multi-locus genotype data. Front Immunol. 2013;4:252. The authors compare escape rates for modeled infections with serially sampled sequence data from three HIV-infected individuals. They predicted escape rates that were higher than previously estimated.

  42. Leviyang S, Ganusov VV. Broad CTL response in early HIV infection drives multiple concurrent CTL escapes. PLoS Comput Biol. 2015;11:e1004492. This paper uses a robust method of CD8+ T cell escape rate calculation that corrects for inherent biases against multiple escapes at the same epitope. Their results are able to bring estimates to the 0.1-0.2 escape events per day predicted by clinical data.

  43. Liu MK, Hawkins N, Ritchie AJ, Ganusov VV, Whale V, et al. Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J Clin Invest. 2013;123:380–93.

    CAS  PubMed  Google Scholar 

  44. Johnson PL, Kochin BF, McAfee MS, Stromnes IM, Regoes RR, et al. Vaccination alters the balance between protective immunity, exhaustion, escape, and death in chronic infections. J Virol. 2011;85:5565–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Reece J, Petravic J, Balamurali M, Loh L, Gooneratne S, et al. An “escape clock” for estimating the turnover of SIV DNA in resting CD4(+) T cells. PLoS Pathog. 2012;8:e1002615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Konrad BP, Vaidya NK, Smith RJ. Modelling mutation to a cytotoxic T-lymphocyte HIV vaccine. Math Popul Stud. 2011;18:122–49.

    Google Scholar 

  47. Kadolsky UD, Asquith B. Quantifying the impact of human immunodeficiency virus-1 escape from cytotoxic T-lymphocytes. PLoS Comput Biol. 2010;6:e1000981.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Schwartz EJ, Yang OO, Cumberland WC, de Pillis LG. Computational model of HIV-1 escape from the cytotoxic T lymphocyte response. Can Appl Math Q. 2013;21:261–79.

    Google Scholar 

  49. Gadhamsetty S, Maree AF, Beltman JB, de Boer RJ. A general functional response of cytotoxic T lymphocyte-mediated killing of target cells. Biophys J. 2014;106:1780–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Castiglione F, Celada F. Immune system modelling and simulation. Boca Raton: CRC; 2015. p. 286.

  51. Liu P, Overman RG, Yates NL, Alam SM, Vandergrift N, et al. Dynamic antibody specificities and virion concentrations in circulating immune complexes in acute to chronic HIV-1 infection. J Virol. 2011;85:11196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ciupe SM, De Leenheer P, Kepler TB. Paradoxical suppression of poly-specific broadly neutralizing antibodies in the presence of strain-specific neutralizing antibodies following HIV infection. J Theor Biol. 2011;277:55–66.

    Article  CAS  PubMed  Google Scholar 

  53. Ciupe SM. Mathematical model of multivalent virus-antibody complex formation in humans following acute and chronic HIV infections. J Math Biol. 2015;71:513–32.

    Article  PubMed  Google Scholar 

  54. Vaidya NK, Ribeiro RM, Miller CJ, Perelson AS. Viral dynamics during primary simian immunodeficiency virus infection: effect of time-dependent virus infectivity. J Virol. 2010;84:4302–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wikramaratna PS, Lourenco J, Klenerman P, Pybus OG, Gupta S. Effects of neutralizing antibodies on escape from CD8+ T-cell responses in HIV-1 infection. Philos Trans R Soc Lond B Biol Sci. 2015. doi:10.1098/rstb.2014.0290. This model includes both CD8+ T cells and the antibody response and suggests a role for antibodies that explains the breakdown of virus control as well as CD8+ T cell escape.

  56. Bar KJ, Tsao CY, Iyer SS, Decker JM, Yang Y, et al. Early low-titer neutralizing antibodies impede HIV-1 replication and select for virus escape. PLoS Pathog. 2012;8:e1002721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Taylor SD, Leib SR, Carpenter S, Mealey RH. Selection of a rare neutralization-resistant variant following passive transfer of convalescent immune plasma in equine infectious anemia virus-challenged SCID horses. J Virol. 2010;84:6536–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Taylor SD, Leib SR, Wu W, Nelson R, Carpenter S, et al. Protective effects of broadly neutralizing immunoglobulin against homologous and heterologous equine infectious anemia virus infection in horses with severe combined immunodeficiency. J Virol. 2011;85:6814–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schwartz EJ, Nanda S, Mealey RH. Antibody escape kinetics of equine infectious anemia virus infection of horses. J Virol. 2015;89:6945–51. This study calculates antibody escape kinetics of equine infectious anemia virus, pioneering the estimation of antibody blocking rates of wild-type virus, fitness costs of mutant virus, and growth rates of both viruses. Such quantitative kinetic estimates may help develop antibody-eliciting vaccine strategies.

  60. Ciupe SM, Schwartz EJ. Understanding virus-host dynamics following EIAV infection in SCID horses. J Theor Biol. 2014;343:1–8.

    Article  PubMed  Google Scholar 

  61. Schwartz EJ, Smith? RJ. Identifying the conditions under which antibodies protect against infection by equine infectious anemia virus. Vaccines. 2014;2:397–421.

  62. Allen LJS, Schwartz EJ. Free-virus and cell-to-cell transmission in models of equine infectious anemia virus infection. Math Biosci. 2015;270:237–48.

    Article  PubMed  Google Scholar 

  63. Schwartz EJ, Pawelek KA, Harrington K, Cangelosi R, Madrid S. Immune control of equine infectious anemia virus infection by cell-mediated and humoral responses. Appl Math. 2013;4:171–7.

    Article  Google Scholar 

  64. Luo S, Perelson AS. Competitive exclusion by autologous antibodies can prevent broad HIV-1 antibodies from arising. Proc Natl Acad Sci U S A. 2015;112:11654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang S, Mata-Fink J, Kriegsman B, Hanson M, Irvine DJ, et al. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies. Cell. 2015;160:785–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Ali Tabei SM, Li Y, Weigert M, Dinner AR. Model for competition from self during passive immunization, with application to broadly neutralizing antibodies for HIV. Vaccine. 2012;30:607–13.

    Article  CAS  PubMed  Google Scholar 

  67. De Boer RJ, Perelson AS. Quantifying T lymphocyte turnover. J Theor Biol. 2013;327:45–87.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Elemans M, Seich Al Basatena NK, Asquith B. The efficiency of the human CD8+ T cell response: how should we quantify it, what determines it, and does it matter? PLoS Comput Biol. 2012;8:e1002381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Luo S, Perelson AS. The challenges of modelling antibody repertoire dynamics in HIV infection. Philos Trans R Soc Lond B Biol Sci. 2015. doi:10.1098/rstb.2014.0247.

Download references

Acknowledgments

The authors thank A. T. Dawes, R. Tyson, and C. A. Cobbold for careful reading of the manuscript and helpful comments. This work is supported by NSF grant DMS-1616299 (to NKV), a grant from the Association for Women in Mathematics (to EJS), and an international research award from Washington State University (to EJS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elissa J. Schwartz.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Virology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, E.J., Biggs, K.R.H., Bailes, C. et al. HIV Dynamics With Immune Responses: Perspectives From Mathematical Modeling. Curr Clin Micro Rpt 3, 216–224 (2016). https://doi.org/10.1007/s40588-016-0049-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-016-0049-z

Keywords

Navigation