Skip to main content
Log in

A survey on positive scalar curvature metrics

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

In this note we survey a selection of classical results and recent advances concerning our understanding of spaces of positive scalar metrics on closed manifolds, and describe how the basic questions can be transplanted to compact manifolds with boundary, a setting that naturally connects to the study of data sets in general relativity. Special emphasis is devoted to highlighting links with nearby fields and discussing some promising future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aubin, T.: Métriques riemanniennes et courbure. J. Differ. Geom. 4, 383–424 (1970)

    MATH  Google Scholar 

  2. Bamler, R., Kleiner, B.: Ricci flow and contractibility of spaces of metrics, preprint. arXiv:1909.08710

  3. Bamler, R., Kleiner, B.: Uniqueness and stability of ricci flow through singularities, preprint. arXiv:1709.04122

  4. Bérard-Bergery, L.: Scalar curvature and isometry group, Spectra of Riemannian Manifolds, pp. 9–28. Kaigai Publications, Tokyo (1983)

    Google Scholar 

  5. Botvinnik, B., Ebert, J., Randal-Williams, O.: Infinite loop spaces and positive scalar curvature. Invent. Math. 209(3), 749–835 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Botvinnik, B., Gilkey, P.B.: Metrics of positive scalar curvature on spherical space forms. Can. J. Math. 48(1), 64–80 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Botvinnik, B., Hanke, B., Schick, T., Walsh, M.: Homotopy groups of the moduli space of metrics of positive scalar curvature. Geom. Topol. 14(4), 2047–2076 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Carlotto, A., Li, C.: Constrained deformations of positive scalar curvature metrics, preprint arXiv:1903.11772

  9. Carlotto, A., Schoen, R.: Localizing solutions of the Einstein constraint equations. Invent. Math. 205(3), 559–615 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Carlotto, A., Wu, D.: Contractibility results for spaces of Riemannian metrics on the disc, preprint. arXiv:1908.02475

  11. Carr, R.: Construction of manifolds of positive scalar curvature. Trans. Am. Math. Soc. 307(1), 63–74 (1988)

    MathSciNet  MATH  Google Scholar 

  12. Cerf, J.: Sur les difféomorphismes de la sphère de dimension trois \((\Gamma _{4}=0)\), Lecture Notes in Mathematics, No. 53, Springer-Verlag, Berlin-New York (1968)

  13. Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean curvature ow equations. J. Differ. Geom. 33(3), 749–786 (1991)

    MATH  Google Scholar 

  14. Choquet-Bruhat, Y.: Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, 141–225 (1952)

    MathSciNet  MATH  Google Scholar 

  15. Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Comm. Math. Phys. 14, 329–335 (1969)

    MathSciNet  MATH  Google Scholar 

  16. Dinkelbach, J., Leeb, B.: Equivariant Ricci ow with surgery and applications to finite group actions on geometric 3-manifolds. Geom. Topol. 13(2), 1129–1173 (2009)

    MathSciNet  MATH  Google Scholar 

  17. Druet, O.: Sharp local isoperimetric inequalities involving the scalar curvature. Proc. Am. Math. Soc. 130(8), 2351–2361 (2002)

    MathSciNet  MATH  Google Scholar 

  18. Evans, L.C., Spruck, J.: Motion of level sets by mean curvature I. J. Differ. Geom 33(3), 635–681 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Gajer, P.: Riemannian metrics of positive scalar curvature on compact manifolds with boundary. Ann. Global Anal. Geom. 5(3), 179–191 (1987)

    MathSciNet  MATH  Google Scholar 

  20. Gao, L.Z., Yau, S.-T.: The existence of negatively Ricci curved metrics on three-manifolds. Invent. Math. 85(3), 637–652 (1986)

    MathSciNet  MATH  Google Scholar 

  21. Gray, A., Vanhecke, L.: Riemannian geometry as determined by the volumes of small geodesic balls. Acta Math. 142(1), 157–198 (1979)

    MathSciNet  MATH  Google Scholar 

  22. Gromov, M.: Stable mappings of foliations into manifolds. Izv. Akad. Nauk SSSR Ser. Mat. 33, 707–734 (1969)

    MathSciNet  Google Scholar 

  23. Gromov, M.: A Dozen Problems, Questions and Conjectures About Positive Scalar Curvature, Foundations of Mathematics and Physics One Century After Hilbert, pp. 135–158. Springer, Cham (2018)

    MATH  Google Scholar 

  24. Gromov, M., LawsonLawson Jr., H.B.: The classification of simply connected manifolds of positive scalar curvature. Ann. Math. (2) 111(3), 423–434 (1980)

    MathSciNet  MATH  Google Scholar 

  25. Gromov, M., Lawson Jr., H.B.: Spin and scalar curvature in the presence of a fundamental group I. Ann. Math. (2) 111(2), 209–230 (1980)

    MathSciNet  MATH  Google Scholar 

  26. Gromov, M., Lawson Jr., H.B.: Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Inst. Hautes Études Sci. Publ. Math. 58, 83–196 (1983)

    MathSciNet  MATH  Google Scholar 

  27. Hamilton, R.S.: Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17(2), 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  28. Hanke, B.: Positive scalar curvature on manifolds with odd order abelian fundamental groups, preprint. arXiv:1908.00944

  29. Hanke, B., Schick, T., Steimle, W.: The space of metrics of positive scalar curvature. Publ. Math. Inst. Hautes Études Sci. 120, 335–367 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Hatcher, A.E.: A proof of the Smale conjecture, \({\rm Diff}(S^{3})\simeq {\rm O}(4)\). Ann. Math. (2) 117(3), 553–607 (1983)

    MathSciNet  MATH  Google Scholar 

  31. Hirsch, S., Lesourd, M.: On the moduli space of asymptotically at manifolds with boundary and the constraint equations, preprint. arXiv:1911.02687

  32. Hitchin, N.: Harmonic spinors. Adv. Math. 14, 1–55 (1974)

    MathSciNet  MATH  Google Scholar 

  33. Jaco, W.: Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, vol. 43. American Mathematical Society, Providence, R.I. (1980)

  34. Kazdan, J.L., Warner, F.W.: Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures. Ann. Math. (2) 101, 317–331 (1975)

    MathSciNet  MATH  Google Scholar 

  35. Kazdan, J.L., Warner, F.W.: Prescribing curvatures, Differential geometry (Proc. Sympos. Pure Math., Vol. XXVII, Stanford Univ., Stanford, Calif., 1973), Part 2, pp. 309–319 (1975)

  36. Kerin, M., Wraith, D.: Homogeneous metrics on spheres. Irish Math. Soc. Bull. 51, 59–71 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Kleiner, B., Lott, J.: Singular Ricci ows I. Acta Math. 219(1), 65–134 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Kosinski, A.A.: Differential Manifolds, Pure and Applied Mathematics, vol. 138. Academic Press Inc, Boston, MA (1993)

    Google Scholar 

  39. Kreck, M., Stolz, S.: Nonconnected moduli spaces of positive sectional curvature metrics. J. Am. Math. Soc. 6(4), 825–850 (1993)

    MathSciNet  MATH  Google Scholar 

  40. Kuiper, N.H.: On conformally: at spaces in the large. Ann. Math. (2) 50, 916–924 (1949)

    MathSciNet  MATH  Google Scholar 

  41. Kuiper, N.H.: On compact conformally Euclidean spaces of dimension \(>2\) 2. Ann. Math. (2) 52, 478–490 (1950)

    MathSciNet  MATH  Google Scholar 

  42. Lawson Jr., H.B.: Complete minimal surfaces in S3. Ann. Math. (2) 92, 335–374 (1970)

    MathSciNet  MATH  Google Scholar 

  43. Lawson Jr., H.B., Michelsohn, M.-L.: Spin geometry, Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton, NJ (1989)

    MATH  Google Scholar 

  44. LeBrun, C.: On the scalar curvature of complex surfaces. Geom. Funct. Anal. 5(3), 619–628 (1995)

    MathSciNet  MATH  Google Scholar 

  45. LeBrun, C.: Kodaira dimension and the Yamabe problem. Commun. Anal. Geom. 7(1), 133–156 (1999)

    MathSciNet  MATH  Google Scholar 

  46. Lee, J.M., Parker, T.H.: The Yamabe problem. Bull. Am. Math. Soc. (N.S.) 17(1), 37–91 (1987)

    MathSciNet  MATH  Google Scholar 

  47. Li, C., Mantoulidis, C.: Positive scalar curvature with skeleton singularities. Math. Ann. 374(1–2), 99–131 (2019)

    MathSciNet  MATH  Google Scholar 

  48. Lichnerowicz, A.: Spineurs harmoniques. C. R. Acad. Sci. Paris 257, 7–9 (1963)

    MathSciNet  MATH  Google Scholar 

  49. Lohkamp, J.: The space of negative scalar curvature metrics. Invent. Math. 110(2), 403–407 (1992)

    MathSciNet  MATH  Google Scholar 

  50. Lohkamp, J.: Scalar curvature and hammocks. Math. Ann. 313(3), 385–407 (1999)

    MathSciNet  MATH  Google Scholar 

  51. Mantoulidis, C., Schoen, R.: On the Bartnik mass of apparent horizons. Class. Quantum Gravity 32(20), 205002 (2015). 16

    MathSciNet  MATH  Google Scholar 

  52. Marques, F.: Deforming three-manifolds with positive scalar curvature. Ann. Math. (2) 176(2), 815–863 (2012)

    MathSciNet  MATH  Google Scholar 

  53. McFeron, D., Székelyhidi, G.: On the positive mass theorem for manifolds with corners. Commun. Math. Phys. 313(2), 425–443 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Miao, P.: Positive mass theorem on manifolds admitting corners along a hypersurface. Adv. Theor. Math. Phys. 6(6), 1163–1182 (2002)

    MathSciNet  Google Scholar 

  55. Milnor, J.: A unique decomposition theorem for 3-manifolds. Am. J. Math. 84, 1–7 (1962)

    MathSciNet  MATH  Google Scholar 

  56. Moishezon, B., Robb, A., Teicher, M.: On Galois covers of Hirzebruch surfaces. Math. Ann. 305(3), 493–539 (1996)

    MathSciNet  MATH  Google Scholar 

  57. Moore, J.D.: Lectures on Seiberg–Witten Invariants: Lecture Notes in Mathematics, vol. 1629. Springer, Berlin (1996)

    Google Scholar 

  58. Morgan, F., Johnson, D.L.: Some sharp isoperimetric theorems for Riemannian manifolds. Indiana Univ. Math. J. 49(3), 1017–1041 (2000)

    MathSciNet  MATH  Google Scholar 

  59. Nirenberg, L.: The Weyl and Minkowski problems in differential geometry in the large. Commun. Pure Appl. Math. 6, 337–394 (1953)

    MathSciNet  MATH  Google Scholar 

  60. Perelman, G.: The entropy formula for the Ricci ow and its geometric applications. preprint arXiv:math/0211159

  61. Perelman, G.: Finite extinction time for the solutions to the Ricci ow on certain three-manifolds. Preprint arXiv:hep-th/0307245

  62. Perelman, G.: Ricci ow with surgery on three-manifolds, preprint arXiv:math/0303109

  63. Reiser, P.: Moduli spaces of metrics of positive scalar curvature on topological spherical space forms, preprint. arXiv:1909.09512

  64. Rosenberg, J., Stolz, S.: Metrics of positive scalar curvature and connections with surgery, Surveys on surgery theory. Ann. Math. Stud. 2, 353–386 (2001)

    MATH  Google Scholar 

  65. Ruberman, D.: An obstruction to smooth isotopy in dimension 4. Math. Res. Lett. 5(6), 743–758 (1998)

    MathSciNet  MATH  Google Scholar 

  66. Schick, T.: A counterexample to the (unstable) Gromov–Lawson–Rosenberg conjecture. Topology 37(6), 1165–1168 (1998)

    MathSciNet  MATH  Google Scholar 

  67. Schick, T.: The topology of positive scalar curvature, In: Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. II, 1285–1307, Kyung Moon Sa, Seoul (2014)

  68. Schoen, R.: Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20(2), 479–495 (1984)

    MathSciNet  MATH  Google Scholar 

  69. Schoen, R., Yau, S.-T.: Positive scalar curvature and minimal hypersurface singularities, preprint. arXiv:1704.05490

  70. Schoen, R., Yau, S.-T.: Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature. Ann. Math. (2) 110(1), 127–142 (1979)

    MathSciNet  MATH  Google Scholar 

  71. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys. 65(1), 45–76 (1979)

    MathSciNet  MATH  Google Scholar 

  72. Schoen, R., Yau, S.-T.: On the structure of manifolds with positive scalar curvature. Manus. Math. 28(1), 159–183 (1979)

    MathSciNet  MATH  Google Scholar 

  73. Schoen, R., Yau, S.-T.: Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature. In: Seminar on Differential Geometry, 209–228, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton, NJ (1982)

  74. Smale, S.: Diffeomorphisms of the 2-sphere. Proc. Am. Math. Soc. 10, 621–626 (1959)

    MathSciNet  MATH  Google Scholar 

  75. Stolz, S.: Simply connected manifolds of positive scalar curvature. Ann. Math. (2) 136(3), 511–540 (1992)

    MathSciNet  MATH  Google Scholar 

  76. Taubes, C.H.: The Seiberg–Witten invariants and symplectic forms. Math. Res. Lett. 1(6), 809–822 (1994)

    MathSciNet  MATH  Google Scholar 

  77. Teicher, M.: Hirzebruch surfaces: degenerations, related braid monodromy, Galois covers, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998), 305–325, Contemp. Math., 241, Amer. Math. Soc., Providence, RI (1999)

  78. Walsh, M.: The space of positive scalar curvature metrics on a manifold with boundary, preprint. arXiv:1411.2423

  79. Walsh, M.G.: Aspects of positive scalar curvature and topology I. Irish Math. Soc. Bull. 80, 45–68 (2017)

    MathSciNet  MATH  Google Scholar 

  80. Walsh, M.G.: Aspects of positive scalar curvature and topology II. Irish Math. Soc. Bull. 81, 57–95 (2018)

    MathSciNet  MATH  Google Scholar 

  81. Weyl, H.: Über die bestimmung einer geschlossenen konvexen fläche durch ihr linienelement, Vierteljahrschr. Naturforsch. Ges. Zür 61, 40–72 (1916)

    MATH  Google Scholar 

  82. Wiemeler, M.: On moduli spaces of positive scalar curvature metrics on highly connected manifolds. preprint arXiv:1610.09658

Download references

Acknowledgements

The present article is an expanded version of the invited address delivered by the author during the XXI Congresso dell’Unione Matematica Italiana held in Pavia, from September 2nd to September 7th, 2019. I would like to thank the scientific committee for their kind invitation, and the organising committee for putting together such a beautiful event. In addition, I would like to express my sincere gratitude to my student Giada Franz for providing a preliminary set of notes that turned out to be extremely useful in the preparation of this survey, as well as to the anonymous referee, whose suggestions were highly appreciated.

This article was completed while the author was a visiting scholar at the Institut Mittag-Leffler: the excellent working conditions and the support of the Royal Swedish Academy of Sciences are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Carlotto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Left-invariant metrics on \(S^3\)

Here we present the proof of the following simple, yet partly surprising result:

Proposition A.1

The three-dimensional sphere \(S^3\), identified with the Lie group \({\text {SU}}(2)\), supports left-invariant metrics of negative scalar curvature.

Proof

Given the identification in the statement, the tangent space at the identity (namely: \(\mathfrak {s}\mathfrak {u}(2)\)) is spanned by the basis

$$\begin{aligned} e_1 = \begin{pmatrix} i &{} 0 \\ 0 &{} -i \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 &{} 1 \\ -1 &{} 0 \end{pmatrix}, \quad e_3 = \begin{pmatrix} 0 &{} i \\ i &{} 0 \end{pmatrix}. \end{aligned}$$

Hence, we define on \(\mathfrak {su}(2)\):

$$\begin{aligned} g(e_i,e_j) = {\left\{ \begin{array}{ll} \mu _1 &{} \hbox {if }i=j=1\\ \mu _2 &{} \hbox {if }i=j=2\\ \mu _3 &{} \hbox {if }i=j=3\\ 0&{}\hbox {else} \end{array}\right. } \end{aligned}$$

Set \(\epsilon _i = e_i/\sqrt{\mu _i}\) for \(i=1,\ldots ,3\). Then, as it easily checked (cf. e.g. [36] for all details), the sectional curvatures of \((S^3,g)\) are given by

$$\begin{aligned} K_g(\epsilon _1,\epsilon _2) = -3\frac{\mu _3}{\mu _1\mu _2} + \frac{\mu _2}{\mu _1\mu _3} + \frac{\mu _1}{\mu _2\mu _3} + \frac{2}{\mu _1} + \frac{2}{\mu _2} - \frac{2}{\mu _3} \end{aligned}$$

and cyclic permutations. Hence, the scalar curvature of this manifold is given by

$$\begin{aligned} R_g&= 2 (K_g(\epsilon _1,\epsilon _2) + K_g(\epsilon _1,\epsilon _3) + K_g(\epsilon _2,\epsilon _3))\\&= -2\left( \frac{\mu _3}{\mu _1\mu _2} + \frac{\mu _2}{\mu _1\mu _3} + \frac{\mu _1}{\mu _2\mu _3} \right) + 4\left( \frac{1}{\mu _1} + \frac{1}{\mu _2} + \frac{1}{\mu _3} \right) \end{aligned}$$

constrained to the open octant \(\{\mu _1>0,\, \mu _2>0,\, \mu _3>0\}\). Therefore, choosing \(\mu _1=\sigma \), \(\mu _2=\sigma ^2\), \(\mu _3=\sigma ^3\) for a parameter \(\sigma >0\), we obtain

$$\begin{aligned} R_g = -2(1 + \sigma ^{-2} + \sigma ^{-4}) + 4(\sigma ^{-1} + \sigma ^{-2} + \sigma ^{-3}) \end{aligned}$$

thus \(R_g \simeq -2\sigma ^{-4}\) as \(\sigma \rightarrow 0^+\), whence the conclusion is straightforward. \(\square \)

Appendix B. Trichotomy theorem

We shall state here, for the sake of completeness a basic but fundamental fact about the conformal geometry of closed manifolds of dimension at least three, that is sometimes cited in the literature as trichotomy theorem.

Theorem B.1

Let \((X^n,g_0)\) be a closed Riemannian manifold. Define the Yamabe invariant of the conformal class \([g_0] = \{ g = e^{2f}g_0 {\ :\ }f\in C^\infty (X) \}\) as

$$\begin{aligned} Y([g_0]) = \inf \{ E(g) {\ :\ }g\in [g_0], {{\,\mathrm{vol}\,}}_g = 1 \}, \end{aligned}$$

where \(E(g) = \int _X R_g\). Then, there are exactly three mutually distinct possibilities:

  1. (1)

    \(Y([g_0])>0\), if and only if there exists \(g\in [g_0]\) with \(R_g>0\), if and only if \(\lambda _1(-L) > 0\).

  2. (2)

    \(Y([g_0])=0\), if and only if there exists \(g\in [g_0]\) with \(R_g=0\), if and only if \(\lambda _1(-L) = 0\).

  3. (3)

    \(Y([g_0])<0\), if and only if there exists \(g\in [g_0]\) with \(R_g<0\), if and only if \(\lambda _1(-L) < 0\).

Here L is the conformal Laplace operator, i.e.

$$\begin{aligned} Lu = \Delta _{g_0} u - c(n) R_{g_0} u, \qquad c(n) = \frac{n-2}{4(n-1)}. \end{aligned}$$

It is perhaps appropriate to note here how, in sketching the proof of Theorem 1.4, we did not rely on the full strength of the statement above but only the following straightforward lemma.

Lemma B.2

Given a closed Riemannian manifold \((X^n,g_0)\), if \(E(g_0)<0\), then \(\lambda _1(-L) < 0\). As a result, there exists \(g\in [g_0]\) with \(R_g<0\).

Proof

We recall the variational characterization of the first eigenvalue of an elliptic operator, which in this case reads

$$\begin{aligned} \lambda _1(-L) = \inf _{u\in H^1{\setminus }\left\{ 0\right\} } \frac{ \int _X |{\nabla u|}^2 +c(n) R_{g_0} u^2 }{\int _X u^2}. \end{aligned}$$

Now, an admissible competitor for the above minimization problem is \(u=1\), so

$$\begin{aligned} \lambda _1(-L) \le c(n) \frac{\int _X R_{g_0} }{{{\,\mathrm{vol}\,}}_{g_0}(X)}=c(n)\frac{E(g_0)}{{{\,\mathrm{vol}\,}}_{g_0}(X)} < 0. \end{aligned}$$

If we set \(g=u^{4/(n-2)}g_0\) and recall that \(R(g) = -c(n)^{-1} u ^{-\frac{n+2}{n-2}} Lu\), we can just deform the Riemannian manifold \((X,g_0)\) using the first (positive) eigenfunction of the conformal Laplacian. This is an elliptic way of spreading the curvature, as we explained above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlotto, A. A survey on positive scalar curvature metrics. Boll Unione Mat Ital 14, 17–42 (2021). https://doi.org/10.1007/s40574-020-00228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-020-00228-7

Keywords

Mathematics Subject Classification

Navigation