Skip to main content
Log in

Contribution of detonation gas to fracturing reach in rock blasting: insights from the combined finite-discrete element method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The action of the detonation gas can be considerably affected by the conditions under which the blast occurs. In order to achieve a more comprehensive understanding of the contribution of detonation gas to fracturing reach, the combined finite-discrete element method (FDEM) is performed to modelling rock blasting under three different circumstances: i. single-borehole blasting without free surface under different in situ stress, ii. single- and multi-borehole blasting with a nearby free surface, and iii. underground contour blasting. The results indicated that: (1) detonation gas contributes significantly to the fracturing reach in single-borehole blasting without free surface, but the pneumatic increase factor (PIF) decreases with the increase in isotropic in situ stress; (2) under anisotropic in situ stress, the contribution of detonation gas to the fracturing reach is significant in the direction of maximum principal pressure but negligible in the direction of minimum principal pressure; (3) the PIF of single-borehole blasting with a nearby free surface is even smaller than that of single-borehole blasting under the hydrostatic pressure of 40MPa, indicating that the nearby free surface weakens the contribution of detonation gas to fracturing reach; (4) due to multi-borehole interaction combined with free surface effect, detonation gas contributes little to the fracturing reach in muti-borehole blasting with a nearby free surface. (5) due to the combined effect of anisotropic in situ stress, free surface and muti-borehole interaction, the contribution of detonation gas to the excavation damage depth can be negligible in underground contour blasting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Lak M, Fatehi Marji M, Yarahmadi Bafghi A, Abdollahipour A (2019) A coupled finite difference-boundary element method for modeling the propagation of explosion-induced radial cracks around a wellbore. J Nat Gas Sci Eng. https://doi.org/10.1016/j.jngse.2019.01.019

    Article  Google Scholar 

  2. Konicek P, Soucek K, Stas L, Singh R (2013) Long-hole destress blasting for rockburst control during deep underground coal mining. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2013.02.001

    Article  Google Scholar 

  3. Hu YG, Liu MS, Wu XX, Zhao G, Li P (2018) Damage-vibration couple control of rock mass blasting for high rock slopes. Int J Rock Mech Mining Sci 103:137–144. https://doi.org/10.1016/j.ijrmms.2018.01.028

    Article  Google Scholar 

  4. Haibo L, Xiang X, Jianchun L et al (2011) Rock damage control in bedrock blasting excavation for a nuclear power plant. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2010.11.016

    Article  Google Scholar 

  5. Li XF, Li HB, Zhang GK (2019) Damage assessment and blast vibrations controlling considering rock properties of underwater blasting. Int J Rock Mech Min Sci 121:10405. https://doi.org/10.1016/j.ijrmms.2019.06.004

    Article  Google Scholar 

  6. Kutter HK, Fairhurst C (1971) On the fracture process in blasting. Int J Rock Mech Min Sci. https://doi.org/10.1016/0148-9062(71)90018-0

    Article  Google Scholar 

  7. Yang R, Ding C, Yang L et al (2018) Visualizing the blast-induced stress wave and blasting gas action effects using digital image correlation. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2018.10.007

    Article  Google Scholar 

  8. Brinkmann JR (1990) An experimental study of the effects of shock and gas penetration in blasting. In: Proceedings of the 3rd international symposium on rock fragmentation by blasting. Brisbane Australia, pp 55–66

  9. Olsson M, Nie S, Bergqvist I, Ouchterlony F (2002) What causes cracks in rock blasting? Fragblast 6:221–233

    Article  Google Scholar 

  10. Yuan W, Su X, Wang W et al (2019) Numerical study of the contributions of shock wave and detonation gas to crack generation in deep rock without free surfaces. J Pet Sci Eng. https://doi.org/10.1016/j.petrol.2019.02.004

    Article  Google Scholar 

  11. Ma GW, An XM (2008) Numerical simulation of blasting-induced rock fractures. Int J Rock Mech Min Sci 45:966–975. https://doi.org/10.1016/j.ijrmms.2007.12.002

    Article  Google Scholar 

  12. Jayasinghe LB, Shang J, Zhao Z, Goh ATC (2019) Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in-situ stresses and discontinuity persistence. Comput Geotech 116:103207. https://doi.org/10.1016/j.compgeo.2019.103207

    Article  Google Scholar 

  13. Bendezu M, Romanel C, Roehl D (2017) Finite element analysis of blast-induced fracture propagation in hard rocks. Comput Struct 182:1–13. https://doi.org/10.1016/j.compstruc.2016.11.006

    Article  Google Scholar 

  14. Wang ZL, Li YC, Shen RF (2007) Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion. Int J Rock Mech Min Sci 44:730–738. https://doi.org/10.1016/j.ijrmms.2006.11.004

    Article  Google Scholar 

  15. Goodarzi M, Mohammadi S, Jafari A (2015) Numerical analysis of rock fracturing by gas pressure using the extended finite element method. Pet Sci 12:304–315. https://doi.org/10.1007/s12182-015-0017-x

    Article  Google Scholar 

  16. Yazid A, Abdelkader N, Abdelmadjid H (2009) A state-of-the-art review of the X-FEM for computational fracture mechanics. Appl Math Model 33:4269–4282

    Article  MathSciNet  Google Scholar 

  17. Liu L, Li H, Li X, Wu R (2020) Full-field strain evolution and characteristic stress levels of rocks containing a single pre-existing flaw under uniaxial compression. Bull Eng Geol Environ 79:3145–3161

    Article  Google Scholar 

  18. Liu L, Li H, Chen S et al (2021) Effects of bedding planes on mechanical characteristics and crack evolution of rocks containing a single pre-existing flaw. Eng Geol 293:106325

    Article  Google Scholar 

  19. Donze FV, Bouchez J, Magnier SA (1997) Modeling fractures in rock blasting. Int J Rock Mech Min Sci 34:1153–1163

    Article  Google Scholar 

  20. Bonilla-Sierra V, Scholtès L, Donzé F, Elmouttie M (2015) DEM analysis of rock bridges and the contribution to rock slope stability in the case of translational sliding failures. Int J Rock Mech Min Sci 80:67–78

    Article  Google Scholar 

  21. Boon CW, Houlsby GT, Utili S (2015) Designing tunnel support in jointed rock masses via the DEM. Rock Mech Rock Eng 48:603–632

    Article  Google Scholar 

  22. Li XF, Li HB, Liu YQ et al (2016) Numerical simulation of rock fragmentation mechanisms subject to wedge penetration for TBMs. Tunn Undergr Sp Technol 53:96–108

    Article  Google Scholar 

  23. Li XF, Li X, Li HB et al (2018) Dynamic tensile behaviours of heterogeneous rocks: the grain scale fracturing characteristics on strength and fragmentation. Int J Impact Eng 118:98–118

    Article  Google Scholar 

  24. Li XF, Zhang QB, Li HB, Zhao J (2018) Grain-based discrete element method (GB-DEM) modelling of multi-scale fracturing in rocks under dynamic loading. Rock Mech Rock Eng 51:3785–3817

    Article  Google Scholar 

  25. Ning Y, Yang J, Ma G, Chen P (2011) Modelling rock blasting considering explosion gas penetration using discontinuous deformation analysis. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-010-0132-3

    Article  Google Scholar 

  26. Lisjak A, Grasselli G (2014) A review of discrete modeling techniques for fracturing processes in discontinuous rock masses. J Rock Mech Geotech Eng 6:301–314

    Article  Google Scholar 

  27. Munjiza AA (2004) The combined finite-discrete element method. John Wiley & Sons

    Book  Google Scholar 

  28. Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput. https://doi.org/10.1108/02644409510799532

    Article  Google Scholar 

  29. Wu D, Li H, Shao Z et al (2021) Effects of infilling materials on mechanical behaviors and cracking process of pre-cracked rock: insights from a hybrid continuum-discontinuum method. Eng Fract Mech 253:107843

    Article  Google Scholar 

  30. Wu D, Li H, Fukuda D, Liu H (2023) Development of a finite-discrete element method with finite-strain elasto-plasticity and cohesive zone models for simulating the dynamic fracture of rocks. Comput Geotech 156:105271

    Article  Google Scholar 

  31. Fukuda D, Mohammadnejad M, Liu H et al (2019) Development of a GPGPU-parallelized hybrid finite-discrete element method for modeling rock fracture. Int J Numer Anal methods Geomech 43:1797–1824

    Article  Google Scholar 

  32. Fukuda D, Liu H, Zhang Q et al (2021) Modelling of dynamic rock fracture process using the finite-discrete element method with a novel and efficient contact activation scheme. Int J Rock Mech Min Sci 138:104645

    Article  Google Scholar 

  33. Yan C, Tong Y (2020) Calibration of microscopic penalty parameters in the combined finite–discrete-element method. Int J Geomech 20:4020092

    Article  Google Scholar 

  34. Yahaghi J, Liu H, Chan A, Fukuda D (2021) Experimental and numerical studies on failure behaviours of sandstones subject to freeze-thaw cycles. Transp Geotech 31:100655

    Article  Google Scholar 

  35. Li XF, Li HB, Liu LW et al (2020) Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. Int J Rock Mech Min Sci 127:104219. https://doi.org/10.1016/j.ijrmms.2020.104219

    Article  Google Scholar 

  36. Lisjak A, Garitte B, Grasselli G et al (2015) The excavation of a circular tunnel in a bedded argillaceous rock (Opalinus Clay): short-term rock mass response and FDEM numerical analysis. Tunn Undergr Sp Technol 45:227–248

    Article  Google Scholar 

  37. Lisjak A, Grasselli G, Vietor T (2014) Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales. Int J Rock Mech Min Sci 65:96–115. https://doi.org/10.1016/j.ijrmms.2013.10.006

    Article  Google Scholar 

  38. Liu Q, Deng P (2019) A numerical investigation of element size and loading/unloading rate for intact rock in laboratory-scale and field-scale based on the combined finite-discrete element method. Eng Fract Mech 211:442–462

    Article  Google Scholar 

  39. Han H, Fukuda D, Liu H et al (2020) Combined finite-discrete element modelling of rock fracture and fragmentation induced by contour blasting during tunnelling with high horizontal in-situ stress. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2020.104214

    Article  Google Scholar 

  40. Zhao Q, Lisjak A, Mahabadi O et al (2014) Numerical simulation of hydraulic fracturing and associated microseismicity using finite-discrete element method. J Rock Mech Geotech Eng 6:574–581

    Article  Google Scholar 

  41. Lei Z, Rougier E, Munjiza A et al (2019) Simulation of discrete cracks driven by nearly incompressible fluid via 2D combined finite-discrete element method. Int J Numer Anal Methods Geomech 43:1724–1743

    Article  Google Scholar 

  42. Yan C, Zheng H, Sun G, Ge X (2016) Combined finite-discrete element method for simulation of hydraulic fracturing. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-015-0816-9

    Article  Google Scholar 

  43. An HM, Liu HY, Han H et al (2017) Hybrid finite-discrete element modelling of dynamic fracture and resultant fragment casting and muck-piling by rock blast. Comput Geotech 81:322–345. https://doi.org/10.1016/j.compgeo.2016.09.007

    Article  Google Scholar 

  44. Yang P, Lei Q, Xiang J et al (2020) Numerical simulation of blasting in confined fractured rocks using an immersed-body fluid-solid interaction model. Tunn Undergr Sp Technol 98:103352

    Article  Google Scholar 

  45. Wang B, Li H, Xing H, Li X (2022) Modelling of gas-driven fracturing and fragmentation in liquid CO2 blasting using finite-discrete element method. Eng Anal Bound Elem 144:409–421

    Article  MathSciNet  Google Scholar 

  46. Munjiza A, Knight EE, Rougier E (2015) Large strain finite element method: a practical course. John Wiley & Sons

    Google Scholar 

  47. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals. Elsevier

    Google Scholar 

  48. Deng P, Liu Q, Huang X et al (2021) Acquisition of normal contact stiffness and its influence on rock crack propagation for the combined finite-discrete element method (FDEM). Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2020.107459

    Article  Google Scholar 

  49. Mahabadi OK, Lisjak A, Munjiza A, Grasselli G (2012) Y-Geo: new combined finite-discrete element numerical code for geomechanical applications. Int J Geomech 12:676–688. https://doi.org/10.1061/(asce)gm.1943-5622.0000216

    Article  Google Scholar 

  50. Munjiza A, Rougier E, Lei Z, Knight EE (2020) FSIS: a novel fluid–solid interaction solver for fracturing and fragmenting solids. Comput Part Mech 7:789–805

    Article  Google Scholar 

  51. Munjiza A, Latham JP, Andrews KRF (2000) Detonation gas model for combined finite-discrete element simulation of fracture and fragmentation. Int J Numer Methods Eng 49:1495–1520

    Article  Google Scholar 

  52. Zhang Z-X (2016) Rock fracture and blasting: theory and applications. Butterworth-Heinemann

    Google Scholar 

  53. Park B-K, Lee I-M, Kim S-G, et al (2004) Probabilistic estimation of fully coupled blasting pressure transmitted to rock mass II-Estimation of rise time

  54. Vanbrabant F, Chacón EP, Quiñones LA (2002) P and S Mach waves generated by the detonation of a cylindrical explosive charge–experiments and simulations. Fragblast 6:21–35

    Article  Google Scholar 

  55. Ainalis D, Kaufmann O, Tshibangu JP et al (2017) Modelling the source of blasting for the numerical simulation of blast-induced ground vibrations: a review. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-016-1101-2

    Article  Google Scholar 

  56. Cho SH, Kaneko K (2004) Influence of the applied pressure waveform on the dynamic fracture processes in rock. Int J Rock Mech Min Sci 41:771–784. https://doi.org/10.1016/j.ijrmms.2004.02.006

    Article  Google Scholar 

  57. Ning Y, Yang J, An X, Ma G (2011) Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework. Comput Geotech 38:40–49. https://doi.org/10.1016/j.compgeo.2010.09.003

    Article  Google Scholar 

  58. Zhang ZX, Chi LY, Qiao Y, Hou DF (2021) Fracture initiation, gas ejection, and strain waves measured on specimen surfaces in model rock blasting. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-020-02300-2

    Article  Google Scholar 

  59. Lysmer J, Kuhlemeyer RL (1969) Finite dynamic model for infinite media. J Eng Mech Div 95:859–877

    Article  Google Scholar 

  60. Tatone BSA, Grasselli G (2015) A calibration procedure for two-dimensional laboratory-scale hybrid finite-discrete element simulations. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2015.01.011

    Article  Google Scholar 

  61. Mahabadi OK, Grasselli G, Munjiza A (2009) Numerical modelling of a Brazilian Disc test of layered rocks using the combined finite-discrete element method. In: RockEng09: 3rd Canada-US rock mechanics symposium. pp 87–88

  62. Euser B, Rougier E, Lei Z et al (2019) Simulation of fracture coalescence in granite via the combined finite–discrete element method. Rock Mech Rock Eng 52:3213–3227

    Article  Google Scholar 

  63. Yuan W, Wang W, Su X et al (2018) Numerical study of the impact mechanism of decoupling charge on blasting-enhanced permeability in low-permeability sandstones. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2018.04.029

    Article  Google Scholar 

  64. Wang J, Elsworth D, Cao Y, Liu S (2020) Reach and geometry of dynamic gas-driven fractures. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2020.104287

    Article  Google Scholar 

  65. Bhandari S (1980) On the role of stress waves and quasi-static gas pressure in rock fragmentation by blasting. In: Gasdynamics of Explosions and Reactive Systems. Elsevier, pp 365–383

  66. McHugh S (1983) Crack extension caused by internal gas pressure compared with extension caused by tensile stress. Int J Fract 21:163–176

    Article  Google Scholar 

  67. Lei Z, Rougier E, Knight EE, et al (2015) FDEM simulation on a triaxial core-flood experiment of shale. In: ARMA US Rock Mechanics/Geomechanics Symposium. ARMA, p ARMA-2015

  68. Knight EE, Rougier E, Lei Z et al (2020) HOSS: an implementation of the combined finite-discrete element method. Comput Part Mech 7:765–787

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (2020YFA0711802), National Nature Science Foundation of China (U22A20239) and Wuhan Science and Technology Bureau of China. We would like to thank Dr. Xiaofeng Li for his suggestions on manuscript writing. The authors acknowledge the constructive comments from the anonymous reviewers and the editor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Li, H. Contribution of detonation gas to fracturing reach in rock blasting: insights from the combined finite-discrete element method. Comp. Part. Mech. 11, 657–673 (2024). https://doi.org/10.1007/s40571-023-00645-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-023-00645-3

Keywords

Navigation