Skip to main content
Log in

Coupling of stabilized total Lagrangian and weakly compressible SPH models for challenging fluid–elastic structure interaction problems

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A numerical model based on the total Lagrangian (TL) and weakly compressible (WC) smoothed particle hydrodynamics (SPH) coupling is developed for complex hydroelastic FSI problems. In this coupling scheme, the fluid phase is based on the WCSPH formulation improved by a numerical diffusion term. A TLSPH framework, stabilized by the hourglass control scheme and artificial viscous force, is employed for the solid phase, based on a linear-elastic constitutive model. The proposed model is verified using a variety of benchmark tests involving the free oscillation of a cantilever plate, the hydrostatic water column on an elastic plate, and dam-break flows interacting with deformable solid domains. In addition, the effect of time integration on the solution accuracy of the proposed model is investigated using two different time-integration schemes in the literature with/without a predictor–corrector stage required for multiple calculations in each time step. Comparisons indicate that the proposed model computations obtained with both time-integration schemes have a reasonable agreement with experimental and other numerical model results and provide smooth pressure/stress fields without numerical instability thanks to special treatments. Although numerical computations obtained with both of the time-integration schemes are generally quite similar, it is observed that the time-integration scheme with a predictor–corrector stage provides higher stability in specific cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhang G, Zha R, Wan D (2022) MPS–FEM coupled method for 3D dam-break flows with elastic gate structures. Eur J Mech B Fluids 94:171–189. https://doi.org/10.1016/j.euromechflu.2022.02.014

    Article  MathSciNet  MATH  Google Scholar 

  2. Khayyer A, Tsuruta N, Shimizu Y, Gotoh H (2019) Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering. Appl Ocean Res 82:397–414. https://doi.org/10.1016/j.apor.2018.10.020

    Article  Google Scholar 

  3. O’Connor J, Rogers BD (2021) A Fluid-structure ınteraction model for free-surface flows and flexible structures using smoothed particle hydrodynamics on a GPU. J Fluids Struct 104:103312

    Article  Google Scholar 

  4. Zhan L, Peng C, Zhang B, Wu W (2019) A stabilized TL–WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction. J Fluids Struct 86:329–353. https://doi.org/10.1016/j.jfluidstructs.2019.02.002

    Article  Google Scholar 

  5. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  6. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–189

    Article  MATH  Google Scholar 

  7. Monaghan JJ (1994) Simulating Free Surface Flows with SPH. J Comput Phys 110:399–406

    Article  MATH  Google Scholar 

  8. Capasso S, Tagliafierro B, Güzel H et al (2021) A numerical validation of 3D experimental dam-break wave interaction with a sharp obstacle using dualsphysics. Water (Basel) 13:2133. https://doi.org/10.3390/w13152133

    Article  Google Scholar 

  9. Kocaman S, Dal K (2020) A new experimental study and SPH comparison for the sequential dam-break problem. J Mar Sci Eng 8:1–17. https://doi.org/10.3390/jmse8110905

    Article  Google Scholar 

  10. Colicchio G, Colagrossi A, Greco M, Landrini M (2002) Free-surface flow after a dam break: a comparative study. Ship Technol Res 49:95–104

    Google Scholar 

  11. Marrone S, Antuono M, Colagrossi A et al (2011) δ-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng 200:1526–1542. https://doi.org/10.1016/j.cma.2010.12.016

    Article  MathSciNet  MATH  Google Scholar 

  12. Iglesias AS, Rojas LP, Rodríguez RZ (2004) Simulation of anti-roll tanks and sloshing type problems with smoothed particle hydrodynamics. Ocean Eng 31:1169–1192. https://doi.org/10.1016/j.oceaneng.2003.09.002

    Article  Google Scholar 

  13. Meng Z, Zhang A, Wang P et al (2022) A targeted essentially non-oscillatory (TENO) SPH method and its applications in hydrodynamics. Ocean Eng 243:110100

    Article  Google Scholar 

  14. Yang Q, Jones V, McCue L (2012) Free-surface flow interactions with deformable structures using an SPH–FEM model. Ocean Eng 55:136–147. https://doi.org/10.1016/j.oceaneng.2012.06.031

    Article  Google Scholar 

  15. Yilmaz A, Kocaman S, Demirci M (2021) Numerical modeling of the dam-break wave impact on elastic sluice gate: A new benchmark case for hydroelasticity problems. Ocean Eng 231:108870

    Article  Google Scholar 

  16. Fourey G, Hermange C, Le Touzé D, Oger G (2017) An efficient FSI coupling strategy between Smoothed Particle Hydrodynamics and Finite Element methods. Comput Phys Commun 217:66–81. https://doi.org/10.1016/j.cpc.2017.04.005

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu K, Yang D, Wright N (2016) A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure. Comput Struct 177:141–161. https://doi.org/10.1016/j.compstruc.2016.08.012

    Article  Google Scholar 

  18. Yang X, Liu M, Peng S, Huang C (2016) Numerical modeling of dam-break flow impacting on flexible structures using an improved SPH-EBG method. Coast Eng 108:56–64. https://doi.org/10.1016/j.coastaleng.2015.11.007

    Article  Google Scholar 

  19. Rahimi MN, Kolukisa DC, Yildiz M et al (2022) A generalized hybrid smoothed particle hydrodynamics–peridynamics algorithm with a novel Lagrangian mapping for solution and failure analysis of fluid–structure interaction problems. Comput Methods Appl Mech Eng 389:114370

    Article  MathSciNet  MATH  Google Scholar 

  20. Sun WK, Zhang LW, Liew KM (2020) A smoothed particle hydrodynamics–peridynamics coupling strategy for modeling fluid–structure interaction problems. Comput Methods Appl Mech Eng 371:113298

    Article  MathSciNet  MATH  Google Scholar 

  21. Yilmaz A, Kocaman S, Demirci M (2022) Numerical analysis of hydroelasticity problems by coupling WCSPH with multibody dynamics. Ocean Eng 243:110205

    Article  Google Scholar 

  22. Capasso S, Tagliafierro B, Martínez-Estévez I et al (2022) A DEM approach for simulating flexible beam elements with the Project Chrono core module in DualSPHysics. Comput Part Mech. https://doi.org/10.1007/s40571-021-00451-9

    Article  Google Scholar 

  23. Khayyer A, Gotoh H, Falahaty H, Shimizu Y (2018) An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions. Comput Phys Commun 232:139–164. https://doi.org/10.1016/j.cpc.2018.05.012

    Article  MathSciNet  MATH  Google Scholar 

  24. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid–structure interaction by SPH. Comput Struct 85:879–890. https://doi.org/10.1016/j.compstruc.2007.01.002

    Article  Google Scholar 

  25. Bin LM, Shao JR, Li HQ (2013) Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method. J Hydrodyn 25:673–682. https://doi.org/10.1016/S1001-6058(13)60412-6

    Article  Google Scholar 

  26. Rafiee A, Thiagarajan KP (2009) An SPH projection method for simulating fluid-hypoelastic structure interaction. Comput Methods Appl Mech Eng 198:2785–2795. https://doi.org/10.1016/j.cma.2009.04.001

    Article  MATH  Google Scholar 

  27. Khayyer A, Shimizu Y, Gotoh H, Hattori S (2021) Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2021.108652

    Article  Google Scholar 

  28. Vignjevic R, Campbell J, Libersky L (2000) A treatment of zero-energy modes in the smoothed particle hydrodynamics method. Comput Methods Appl Mech Eng 184:67–85. https://doi.org/10.1016/S0045-7825(99)00441-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Belytschko T, Guo Y, Liu WK, Xiao SP (2000) A unified stability analysis of meshless particle methods. Int J Numer Methods Eng 48:1359–1400

    Article  MathSciNet  MATH  Google Scholar 

  30. Ganzenmüller GC (2015) An hourglass control algorithm for Lagrangian Smooth Particle Hydrodynamics. Comput Methods Appl Mech Eng 286:87–106. https://doi.org/10.1016/j.cma.2014.12.005

    Article  MathSciNet  MATH  Google Scholar 

  31. He J, Tofighi N, Yildiz M et al (2017) A coupled WC-TL SPH method for simulation of hydroelastic problems. Int J Comut Fluid Dyn 31:174–187. https://doi.org/10.1080/10618562.2017.1324149

    Article  MathSciNet  MATH  Google Scholar 

  32. Sun PN, Le Touzé D, Zhang AM (2019) Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR. Eng Anal Bound Elem 104:240–258. https://doi.org/10.1016/j.enganabound.2019.03.033

    Article  MathSciNet  MATH  Google Scholar 

  33. Lyu H-G, Sun P-N, Huang X-T et al (2021) On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering. Appl Ocean Res 117:102938

    Article  Google Scholar 

  34. Sun PN, Le Touzé D, Oger G, Zhang AM (2021) An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Eng. https://doi.org/10.1016/j.oceaneng.2020.108552

    Article  Google Scholar 

  35. Domínguez JM, Fourtakas G, Altomare C et al (2021) DualSPHysics : from fluid dynamics to multiphysics problems. Comput Part Mech. https://doi.org/10.1007/s40571-021-00404-2

    Article  Google Scholar 

  36. Meng Z-F, Zhang A-M, Yan J-L et al (2022) A hydroelastic fluid–structure interaction solver based on the Riemann-SPH method. Comput Methods Appl Mech Eng 390:114522

    Article  MathSciNet  MATH  Google Scholar 

  37. Batchelor GK (1974) An Introduction to Fluid Mechanics. Cambridge University Press, UK

    Google Scholar 

  38. Crespo AJC, Domínguez JM, Rogers BD et al (2015) DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Comput Phys Commun 187:204–216. https://doi.org/10.1016/j.cpc.2014.10.004

    Article  MATH  Google Scholar 

  39. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396

    Article  MathSciNet  MATH  Google Scholar 

  40. Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180:861–872. https://doi.org/10.1016/j.cpc.2008.12.004

    Article  MathSciNet  MATH  Google Scholar 

  41. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  42. Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231:7057–7075. https://doi.org/10.1016/j.jcp.2012.05.005

    Article  MathSciNet  Google Scholar 

  43. Leimkuhler B, Matthews C (2015) Molecular Dynamics: with deterministic and stochastic numerical methods. Springer International Publishing, Cham

    Book  MATH  Google Scholar 

  44. Verlet L (1967) Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103. https://doi.org/10.1088/0022-3727/9/2/008

    Article  Google Scholar 

  45. Monaghan JJ, Kos A (1999) Solitary Waves on a Cretan Beach. J Waterw Port Coast Ocean Eng 125:145–155. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)

    Article  Google Scholar 

  46. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662. https://doi.org/10.1016/S0045-7825(01)00254-7

    Article  MATH  Google Scholar 

  47. Zhang C, Rezavand M, Hu X (2021) A multi-resolution SPH method for fluid-structure interactions. J Comput Phys 429:110028

    Article  MathSciNet  MATH  Google Scholar 

  48. Gao T, Qiu H, Fu L (2022) A Block-based Adaptive Particle Refinement SPH Method for Fluid-Structure Interaction Problems. Comput Methods Appl Mech Eng 399:115356

    Article  MathSciNet  MATH  Google Scholar 

  49. Yao X, Huang D (2022) Coupled PD-SPH modeling for fluid-structure interaction problems with large deformation and fracturing. Comput Struct 270:106847

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ada Yilmaz.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, A., Kocaman, S. & Demirci, M. Coupling of stabilized total Lagrangian and weakly compressible SPH models for challenging fluid–elastic structure interaction problems. Comp. Part. Mech. 10, 1811–1825 (2023). https://doi.org/10.1007/s40571-023-00591-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-023-00591-0

Keywords

Navigation