Skip to main content
Log in

An improved SPH-FEM coupling approach for modeling fluid–structure interaction problems

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

An improved smooth particle hydrodynamics–finite element method (SPH-FEM) coupling approach was developed for investigating fluid–structure interaction (FSI) problems. To deal with the conjunction of physical quantities at the fluid–structure interfacial region, an interface particle coupling strategy was proposed, in which two kinds of virtual interface particles, i.e., interfacial repulsive particle and associated ghost particle, were arranged to accurately represent the reciprocal interactions between fluid and structure. What is more, a new density correction method combining the δ-SPH and Shepard filter was developed to obtain smoother pressure distribution and to improve numerical stability of SPH calculation. The accuracy and efficiency of the proposed approach were verified through analyzing two typical FSI problems, deformation of an elastic plate subjected to time-varying water pressure and fluid flow in a rolling tank interacting with an elastic beam, and comparing the simulation results with experimental observations and other previously published results. Finally, the proposed coupling approach was further employed to study the fluid sloshing in a motional tank and the influences of baffle in tank on sloshing. Numerical results demonstrate that the proposed improved SPH-FEM approach is applicable to several types of fluid–structure interaction problems with high accuracy and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Wan D, Turek S (2007) An efficient multigrid-FEM method for the simulation of solid-liquid two phase flows. J Comput Appl Math 203:561–580. https://doi.org/10.1016/j.cam.2006.04.021

    Article  MathSciNet  MATH  Google Scholar 

  2. Daude F, Galon P (2018) A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction. J Comput Phys 362:375–408. https://doi.org/10.1016/j.jcp.2018.01.055

    Article  MathSciNet  MATH  Google Scholar 

  3. Ning J, Zhang H, Xu X, Ma T (2021) A novel fluid-structure interaction algorithm for compressible flows and deformable structures. J Comput Phys 426:109921. https://doi.org/10.1016/j.jcp.2020.109921

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhalla APS, Nangia N, Dafnakis P et al (2020) Simulating water-entry/exit problems using Eulerian-Lagrangian and fully-Eulerian fictitious domain methods within the open-source IBAMR library. Appl Ocean Res 94:101932. https://doi.org/10.1016/j.apor.2019.101932

    Article  Google Scholar 

  5. Benson DJ (1992) Computational methods in Lagrangian and Eulerian hydrocodes. Comput Methods Appl Mech Eng 99:235–394. https://doi.org/10.1016/0045-7825(92)90042-I

    Article  MathSciNet  MATH  Google Scholar 

  6. Basting S, Quaini A, Čanić S, Glowinski R (2017) Extended ALE Method for fluid-structure interaction problems with large structural displacements. J Comput Phys 331:312–336. https://doi.org/10.1016/j.jcp.2016.11.043

    Article  MathSciNet  MATH  Google Scholar 

  7. Liu M, Zhang Z (2019) Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions. Sci China Phys Mech Astron 62:984701. https://doi.org/10.1007/s11433-018-9357-0

    Article  Google Scholar 

  8. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389. https://doi.org/10.1093/mnras/181.3.375

    Article  MATH  Google Scholar 

  9. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024. https://doi.org/10.1086/112164

    Article  Google Scholar 

  10. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406. https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  11. Ozbulut M, Yildiz M, Goren O (2014) A numerical investigation into the correction algorithms for SPH method in modeling violent free surface flows. Int J Mech Sci 79:56–65. https://doi.org/10.1016/j.ijmecsci.2013.11.021

    Article  Google Scholar 

  12. Felix-Gonzalez I, Sanchez-Mondragon J, Cruces-Giron AR (2022) Sloshing study on prismatic LNG tank for the vertical location of the rotational center. Comput Part Mech. https://doi.org/10.1007/s40571-021-00450-w

    Article  Google Scholar 

  13. Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662. https://doi.org/10.1016/S0045-7825(01)00254-7

    Article  MATH  Google Scholar 

  14. Zhang C, Hu XY, Adams NA (2017) A generalized transport-velocity formulation for smoothed particle hydrodynamics. J Comput Phys 337:216–232. https://doi.org/10.1016/j.jcp.2017.02.016

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen D, Huang W, Sloan SW (2019) An alternative updated Lagrangian formulation for finite particle method. Comput Methods Appl Mech Eng 343:490–505. https://doi.org/10.1016/j.cma.2018.09.001

    Article  MathSciNet  MATH  Google Scholar 

  16. Khayyer A, Gotoh H, Falahaty H, Shimizu Y (2018) An enhanced ISPH-SPH coupled method for simulation of incompressible fluid-elastic structure interactions. Comput Phys Commun 232:139–164. https://doi.org/10.1016/j.cpc.2018.05.012

    Article  MathSciNet  Google Scholar 

  17. Paggi M, Amicarelli A, Lenarda P (2021) SPH modelling of hydrodynamic lubrication: laminar fluid flow-structure interaction with no-slip conditions for slider bearings. Comput Part Mech 8:665–679. https://doi.org/10.1007/s40571-020-00362-1

    Article  Google Scholar 

  18. Zhan L, Peng C, Zhang B, Wu W (2019) A stabilized TL-WC SPH approach with GPU acceleration for three-dimensional fluid-structure interaction. J Fluids Struct 86:329–353. https://doi.org/10.1016/j.jfluidstructs.2019.02.002

    Article  Google Scholar 

  19. Zhang C, Rezavand M, Hu X (2021) A multi-resolution SPH method for fluid-structure interactions. J Comput Phys 429:110028. https://doi.org/10.1016/j.jcp.2020.110028

    Article  MathSciNet  MATH  Google Scholar 

  20. Rabczuk T, Belytschko T, Xiao SP (2004) Stable particle methods based on Lagrangian kernels. Comput Methods Appl Mech Eng 193:1035–1063. https://doi.org/10.1016/j.cma.2003.12.005

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu M, Liu G (2006) Restoring particle consistency in smoothed particle hydrodynamics. Appl Numer Math 56:19–36. https://doi.org/10.1016/j.apnum.2005.02.012

    Article  MathSciNet  MATH  Google Scholar 

  22. Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196:2777–2799. https://doi.org/10.1016/j.cma.2006.06.020

    Article  MathSciNet  MATH  Google Scholar 

  23. Long T, Hu D, Yang G, Wan D (2016) A particle-element contact algorithm incorporated into the coupling methods of FEM-ISPH and FEM-WCSPH for FSI problems. Ocean Eng 123:154–163. https://doi.org/10.1016/j.oceaneng.2016.06.040

    Article  Google Scholar 

  24. Zhang A, Sun P, Ming F, Colagrossi A (2017) Smoothed particle hydrodynamics and its applications in fluid-structure interactions. J Hydrodyn 29:187–216. https://doi.org/10.1016/S1001-6058(16)60730-8

    Article  Google Scholar 

  25. Li Z, Leduc J, Nunez-Ramirez J et al (2015) A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion. Comput Mech 55:697–718. https://doi.org/10.1007/s00466-015-1131-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Attaway SW, Heinstein MW, Swegle JW (1994) Coupling of smooth particle hydrodynamics with the finite element method. Nucl Eng Des 150:199–205. https://doi.org/10.1016/0029-5493(94)90136-8

    Article  Google Scholar 

  27. Johnson GR (1994) Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations. Nucl Eng Des 150:265–274. https://doi.org/10.1016/0029-5493(94)90143-0

    Article  Google Scholar 

  28. Johnson GR, Stryk RA, Beissel SR (1996) SPH for high velocity impact computations. Comput Methods Appl Mech Eng 139:347–373. https://doi.org/10.1016/S0045-7825(96)01089-4

    Article  MATH  Google Scholar 

  29. De Vuyst T, Vignjevic R, Campbell JC (2005) Coupling between meshless and finite element methods. Int J Impact Eng 31:1054–1064. https://doi.org/10.1016/j.ijimpeng.2004.04.017

    Article  Google Scholar 

  30. Yang Q, Jones V, McCue L (2012) Free-surface flow interactions with deformable structures using an SPH-FEM model. Ocean Eng 55:136–147. https://doi.org/10.1016/j.oceaneng.2012.06.031

    Article  Google Scholar 

  31. Kalateh F, Koosheh A (2018) Application of SPH-FE method for fluid-structure interaction using immersed boundary method. Eng Comput (Swansea, Wales) 35:2802–2824. https://doi.org/10.1108/EC-01-2018-0041

    Article  MATH  Google Scholar 

  32. Fourey G, Hermange C, Le Touzé D, Oger G (2017) An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods. Comput Phys Commun 217:66–81. https://doi.org/10.1016/j.cpc.2017.04.005

    Article  MathSciNet  MATH  Google Scholar 

  33. Long T, Hu D, Wan D et al (2017) An arbitrary boundary with ghost particles incorporated in coupled FEM-SPH model for FSI problems. J Comput Phys 350:166–183. https://doi.org/10.1016/j.jcp.2017.08.044

    Article  MathSciNet  MATH  Google Scholar 

  34. Fuchs SL, Meier C, Wall WA, Cyron CJ (2021) A novel smoothed particle hydrodynamics and finite element coupling scheme for fluid-structure interaction: the sliding boundary particle approach. Comput Methods Appl Mech Eng 383:113922. https://doi.org/10.1016/j.cma.2021.113922

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu M, Shao J, Chang J (2012) On the treatment of solid boundary in smoothed particle hydrodynamics. Sci China Technol Sci 55:244–254. https://doi.org/10.1007/s11431-011-4663-y

    Article  MATH  Google Scholar 

  36. Shao S, Lo EYM (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26:787–800. https://doi.org/10.1016/S0309-1708(03)00030-7

    Article  Google Scholar 

  37. Gomes DDSDM, da Hora MD, Nascimento GDC (2021) Application of recent SPH formulations to simulate free-surface flow in a vertical slot fishway. Comput Part Mech. https://doi.org/10.1007/s40571-021-00416-y

    Article  Google Scholar 

  38. Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149:135–143

    MATH  Google Scholar 

  39. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226. https://doi.org/10.1002/fld.2600

    Article  MATH  Google Scholar 

  40. Antuono M, Colagrossi A, Marrone S, Molteni D (2010) Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Comput Phys Commun 181:532–549. https://doi.org/10.1016/j.cpc.2009.11.002

    Article  MathSciNet  MATH  Google Scholar 

  41. Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J Hydraul Res 54:1–26. https://doi.org/10.1080/00221686.2015.1119209

    Article  Google Scholar 

  42. Rodriguez-Paz M, Bonet J (2005) A corrected smooth particle hydrodynamics formulation of the shallow-water equations. Comput Struct 83:1396–1410. https://doi.org/10.1016/j.compstruc.2004.11.025

    Article  MathSciNet  Google Scholar 

  43. Pan K, Ijzermans RHA, Jones BD et al (2016) Application of the SPH method to solitary wave impact on an offshore platform. Comput Part Mech 3:155–166. https://doi.org/10.1007/s40571-015-0069-0

    Article  Google Scholar 

  44. Marrone S, Antuono M, Colagrossi A et al (2011) δ-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng 200:1526–1542. https://doi.org/10.1016/j.cma.2010.12.016

    Article  MathSciNet  MATH  Google Scholar 

  45. Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183:2570–2580. https://doi.org/10.1016/j.cpc.2012.07.006

    Article  MathSciNet  Google Scholar 

  46. Antuono M, Marrone S, Colagrossi A, Bouscasse B (2015) Energy balance in the δ-SPH scheme. Comput Methods Appl Mech Eng 289:209–226. https://doi.org/10.1016/j.cma.2015.02.004

    Article  MathSciNet  MATH  Google Scholar 

  47. Vacondio R, Rogers BD, Stansby PK (2012) Smoothed particle hydrodynamics: approximate zero-consistent 2-D boundary conditions and still shallow-water tests. Int J Numer Methods Fluids 69:226–253. https://doi.org/10.1002/fld.2559

    Article  MathSciNet  MATH  Google Scholar 

  48. Lobovský L, Botia-Vera E, Castellana F et al (2014) Experimental investigation of dynamic pressure loads during dam break. J Fluids Struct 48:407–434. https://doi.org/10.1016/j.jfluidstructs.2014.03.009

    Article  Google Scholar 

  49. Adami S, Hu X, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231:7057–7075. https://doi.org/10.1016/j.jcp.2012.05.005

    Article  MathSciNet  Google Scholar 

  50. Antoci C, Gallati M, Sibilla S (2007) Numerical simulation of fluid-structure interaction by SPH. Comput Struct 85:879–890. https://doi.org/10.1016/j.compstruc.2007.01.002

    Article  Google Scholar 

  51. Souto-Iglesias A, Botia-Vera E (2012) SPHERIC benchmark test case. In: Tech. Univ. Madrid. http://canal.etsin.upm.es/ftp/SPHERIC_BENCHMARKS/. Accessed 05 March 2022

  52. Idelsohn SR, Marti J, Souto-Iglesias A, Oñate E (2008) Interaction between an elastic structure and free-surface flows: experimental versus numerical comparisons using the PFEM. Comput Mech 43:125–132. https://doi.org/10.1007/s00466-008-0245-7

    Article  MATH  Google Scholar 

  53. Svenning E, Mark A, Edelvik F (2014) Simulation of a rubber beam interacting with a two-phase flow in a rolling tank. In: Fontes M, Günther M, Marheineke N (eds) Progress in Industrial Mathematics at ECMI 2012. Mathematics in Industry, vol 19. Springer, Cham, pp 157–165. https://doi.org/10.1007/978-3-319-05365-3_21

  54. Kishev ZR, Hu C, Kashiwagi M (2006) Numerical simulation of violent sloshing by a CIP-based method. J Mar Sci Technol 11:111–122. https://doi.org/10.1007/s00773-006-0216-7

    Article  Google Scholar 

  55. Zheng X, Ma QW, Duan WY (2014) Incompressible SPH method based on Rankine source solution for violent water wave simulation. J Comput Phys 276:291–314. https://doi.org/10.1016/j.jcp.2014.07.036

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ting Long at Guangxi University, Dr. Zhilang Zhang at National University of Singapore and Dr. Ding Chen at Hohai University for their kind advice and helpful suggestions. This work was supported by the National Natural Science Foundation of China [No. 12072104, 51679077] and the Postgraduate Research and Innovation Project of Jiangsu Province (KYCX21_0460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Huang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, X., Zhang, X. & Huang, D. An improved SPH-FEM coupling approach for modeling fluid–structure interaction problems. Comp. Part. Mech. 10, 313–330 (2023). https://doi.org/10.1007/s40571-022-00498-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00498-2

Keywords

Navigation