Skip to main content
Log in

Material interface modeling by the enriched RKPM with stabilized nodal integration

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this paper, an enriched reproducing kernel particle method combined with stabilized conforming nodal integration (SCNI) is proposed to tackle material interface problems. Regarding the domain integration, the use of SCNI offers an effective NI technique and eliminates the zero-energy modes which occurs to direct NI. To model material interfaces, the method enriches the approximation by adding special functions constructed based on the level set function to represent weak discontinuities. Numerical examples with simple and complicated geometries of interface problems in two-dimensional linear elasticity are presented to test the performance of the proposed method, and results show that it considerably reduces strain oscillations and yields optimal convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44

Similar content being viewed by others

References

  1. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    MathSciNet  MATH  Google Scholar 

  2. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20:1081–1106

    MathSciNet  MATH  Google Scholar 

  3. Duarte CA, Oden JT (1996) H-p clouds-an h-p meshless method. Numer Methods Partial Differ Equ 12:673–705

    MathSciNet  MATH  Google Scholar 

  4. Atluri SN, Zhu T (1998) A new Meshless Local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127

    MathSciNet  MATH  Google Scholar 

  5. De S, Bathe KJ (2000) The method of finite spheres. Comput Mech 25:329–345

    MathSciNet  MATH  Google Scholar 

  6. Arroyo M, Ortiz M (2006) Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods. Int J Numer Methods Eng 65:2167–2202

    MathSciNet  MATH  Google Scholar 

  7. Chen J-S, Pan C, Wu C-T (1997) Large deformation analysis of rubber based on a reproducing kernel particle method. Comput Mech 19:211–227

    MathSciNet  MATH  Google Scholar 

  8. Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196:2777–2799

    MathSciNet  MATH  Google Scholar 

  9. Belytschko T, Lu YY, Gu L (1995) Crack propagation by element-free Galerkin methods. Eng Fract Mech 51:295–315

    Google Scholar 

  10. Belytschko T, Tabbara M (1996) Dynamic fracture using element-free Galerkin methods. Int J Numer Methods Eng 39:923–938

    MATH  Google Scholar 

  11. Rabczuk T, Bordas S, Zi G (2007) A three-dimensional meshfree method for continuous multiple-crack initiation, propagation and junction in statics and dynamics. Comput Mech 40:473–495

    MATH  Google Scholar 

  12. Tanaka S, Suzuki H, Sadamoto S, Sannomaru S, Yu T, Bui TQ (2016) J-integral evaluation for 2D mixed-mode crack problems employing a meshfree stabilized conforming nodal integration method. Comput Mech 58:185–198

    MathSciNet  MATH  Google Scholar 

  13. Sadamoto S, Ozdemir M, Tanaka S, Taniguchi K, Yu TT, Bui TQ (2017) An effective meshfree reproducing kernel method for buckling analysis of cylindrical shells with and without cutouts. Comput Mech 59:919–932

    MathSciNet  Google Scholar 

  14. Wang D, Chen J-S (2008) A Hermite reproducing kernel approximation for thin-plate analysis with sub-domain stabilized conforming integration. Int J Numer Methods Eng 74:368–390

    MATH  Google Scholar 

  15. Wang D, Lin Z (2011) Dispersion and transient analyses of Hermite reproducing kernel Galerkin meshfree method with sub-domain stabilized conforming integration for thin beam and plate structures. Comput Mech 48:47–63

    MathSciNet  MATH  Google Scholar 

  16. Dolbow J, Belytschko T (1999) Numerical integration of the Galerkin weak form in meshfree methods. Comput Mech 23:219–230

    MathSciNet  MATH  Google Scholar 

  17. Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139:49–74

    MathSciNet  MATH  Google Scholar 

  18. Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466

    MATH  Google Scholar 

  19. Chen J-S, Hillman M, Rüter M (2013) An arbitrary order variationally consistent integration for Galerkin meshfree methods. Int J Numer Methods Eng 95:387–418

    MathSciNet  MATH  Google Scholar 

  20. Hillman M, Chen J-S (2016) An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics. Int J Numer Methods Eng 107:603–630

    MathSciNet  MATH  Google Scholar 

  21. Huang T-H, Wei H, Chen J-S, Hillman M (2020) RKPM2D: an open-source implementation of nodally integrated reproducing kernel particle method for solving partial differential equations. Comp Part Mech 7:393–433

    Google Scholar 

  22. Dyka CT, Randles PW, Ingel RP (1997) Stress points for tension instability in SPH. Int J Numer Methods Eng 40:2325–2341

    MATH  Google Scholar 

  23. Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47:1189–1214

    MATH  Google Scholar 

  24. Puso MA, Chen JS, Zywicz E, Elmer W (2008) Meshfree and finite element nodal integration methods. Int J Numer Methods Eng 74:416–446

    MathSciNet  MATH  Google Scholar 

  25. Wu CT, Koishi M, Hu W (2015) A displacement smoothing induced strain gradient stabilization for the meshfree Galerkin nodal integration method. Comput Mech 56:19–37

    MathSciNet  MATH  Google Scholar 

  26. Wu CT, Wu Y, Lyu D, Pan X, Hu W (2020) The momentum-consistent smoothed particle Galerkin (MC-SPG) method for simulating the extreme thread forming in the flow drill screw-driving process. Comput Part Mech 7:177–191

    Google Scholar 

  27. Cordes LW, Moran B (1996) Treatment of material discontinuity in the Element-Free Galerkin method. Comput Methods Appl Mech Eng 139:75–89

    MATH  Google Scholar 

  28. Krongauz Y, Belytschko T (1998) EFG approximation with discontinuous derivatives. Int J Numer Methods Eng 41:1215–1233

    MathSciNet  MATH  Google Scholar 

  29. Wang D, Chen J-S, Sun L (2003) Homogenization of magnetostrictive particle-filled elastomers using an interface-enriched reproducing kernel particle method. Finite Elem Anal Des 39:765–782

    Google Scholar 

  30. Liu CW, Taciroglu E (2006) Enriched reproducing kernel particle method for piezoelectric structures with arbitrary interfaces. Int J Numer Methods Eng 67:1565–1586

  31. Joyot P, Trunzler J, Chinesta F (2005) Enriched reproducing kernel approximation: reproducing functions with discontinuous derivatives. Lect Notes Comput Sci Eng 43:93–107

    MathSciNet  MATH  Google Scholar 

  32. Masuda S, Noguchi H (2006) Analysis of structure with material interface by meshfree method. Comput Model Eng Sci 11:131–144

    Google Scholar 

  33. Wu CT, Guo Y, Askari E (2013) Numerical modeling of composite solids using an immersed meshfree Galerkin method. Compos B Eng 45:1397–1413

    Google Scholar 

  34. Wang J, Zhou G, Hillman M, Madra A, Bazilevs Y, Du J, Su K (2021) Consistent immersed volumetric Nitsche methods for composite analysis. Comput Methods Appl Mech Eng 385:114042

    MathSciNet  MATH  Google Scholar 

  35. Huang T-H, Chen J-S, Tupek MR, Beckwith FN, Koester JJ, Fang HE (2021) A variational multiscale immersed meshfree method for heterogeneous materials. Comput Mech 67:1059–1097

    MathSciNet  MATH  Google Scholar 

  36. Koester JJ, Chen J-S (2019) Conforming window functions for meshfree methods. Comput Methods Appl Mech Eng 347:588–621

    MathSciNet  MATH  Google Scholar 

  37. Sukumar N, Chopp DL, Moës N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190:6183–6200

    MathSciNet  MATH  Google Scholar 

  38. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49

    MathSciNet  MATH  Google Scholar 

  39. Simo JC, Hughes TJR (1986) On the variational foundations of assumed strain methods. J Appl Mech 53:51–54

    MathSciNet  MATH  Google Scholar 

  40. Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29:1595–1638

  41. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193:1257–1275

    MathSciNet  MATH  Google Scholar 

  42. Dunavant DA (1985) High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int J Numer Methods Eng 21:1129–1148

    MathSciNet  MATH  Google Scholar 

  43. Kachanov ML, Shafiro B, Tsukrov I (2013) Handbook of elasticity solutions. Springer, Berlin

    Google Scholar 

  44. Fries T-P, Belytschko T (2010) The extended/generalized finite element method: an overview of the method and its applications. Int J Numer Methods Eng 84:253–304

    MathSciNet  MATH  Google Scholar 

  45. Guan PC, Chi SW, Chen JS, Slawson TR, Roth MJ (2011) Semi-Lagrangian reproducing kernel particle method for fragment-impact problems. Int J Impact Eng 38:1033–1047

    Google Scholar 

  46. Pasetto M, Baek J, Chen J-S, Wei H, Sherburn JA, Roth MJ (2021) A Lagrangian/semi-Lagrangian coupling approach for accelerated meshfree modelling of extreme deformation problems. Comput Methods Appl Mech Eng 381:113827

    MathSciNet  MATH  Google Scholar 

  47. Zienkiewicz OC, Taylor RL, Zhu J (2013) The finite element method: its basis and fundamentals, 7th edn. Elsevier, Oxford

    MATH  Google Scholar 

Download references

Acknowledgements

Huy Anh Nguyen is gratefully acknowledged the support of this work by Japanese Government (MEXT) scholarship for his Doctoral Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoyuki Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Derivation of the weak form

Appendix A: Derivation of the weak form

The basis for the assumed strain method [39, 40] is specified by the Hu-Washizu variational principle, which incorporates all field equations from Eqs. (14) and (16)–(18) into the functional and fulfills them in the weak sense. The admissible function spaces for the displacement \(\varvec{u}\), stress \(\varvec{\sigma }\), assumed strain \(\tilde{\varvec{\varepsilon }}\) and Lagrange multiplier \(\varvec{\lambda }\) are defined as

$$\begin{aligned} \mathbb {V}&= \{ \varvec{u}(\varvec{x}) \in [L^2(\varOmega )]^2: u_{i,j} \in L^2(\varOmega ), \; i,j = 1,2 \} , \end{aligned}$$
(49a)
$$\begin{aligned} \mathbb {S}&= \{\varvec{\sigma }(\varvec{x}) \in [L^2(\varOmega )]^{2\times 2}: \varvec{\sigma } = \varvec{\sigma }^T \} , \end{aligned}$$
(49b)
$$\begin{aligned} \mathbb {E}&= \{\varvec{\gamma }(\varvec{x}) \in [L^2(\varOmega )]^{2\times 2}: \varvec{\gamma } = \varvec{\gamma }^T \} , \end{aligned}$$
(49c)
$$\begin{aligned} \varLambda&= \{\varvec{\lambda }(\varvec{x}) \in [L^2(\varGamma _u)]^2\} , \end{aligned}$$
(49d)

respectively, and \(L^2\) is the space of square integrable functions. Note that the satisfaction of the essential BCs is not required for elements of \(\mathbb {V}\). Let \(\varPi _{HW}:\mathbb {V} \times \mathbb {S} \times \mathbb {E} \times \varLambda \rightarrow \mathbb {R}\) be the Hu-Washizu functional which is defined as follows,

$$\begin{aligned}&\varPi _{HW}(\varvec{u},\varvec{\sigma }, \tilde{\varvec{\varepsilon }}, \varvec{\lambda }) \nonumber \\ {}&= \int _{\varOmega } { \Biggl \{ \frac{1}{2} \tilde{\varvec{\varepsilon }} : \mathbb {C}: \tilde{\varvec{\varepsilon }} - \varvec{b} \cdot \varvec{u} - \varvec{\sigma } : [\tilde{\varvec{\varepsilon }} - \frac{1}{2}(\nabla \varvec{u} + \nabla \varvec{u}^T)] \, \Biggr \} \textrm{d}V} \nonumber \\&\quad - \int _{\varGamma _t} {\varvec{\bar{t}} \cdot \varvec{u}} \, \textrm{d}S - \int _{\varGamma _u} {\varvec{\lambda } \cdot (\varvec{u} - \varvec{\bar{u}}) } \, \textrm{d}S. \end{aligned}$$
(50)

By taking the first variation of the functional \(\varPi _{HW}\) in the standard manner, it yields

$$\begin{aligned}&\delta \varPi _{HW}(\varvec{u},\varvec{\sigma }, \tilde{\varvec{\varepsilon }}, \varvec{\lambda }) \nonumber \\&\quad = \int _{\varOmega } {\delta \tilde{\varvec{\varepsilon }} : (\mathbb {C}: \tilde{\varvec{\varepsilon }} - \varvec{\sigma })} \,\textrm{d}V - \int _{\varOmega } {\delta \varvec{\sigma } : (\varvec{\varepsilon } - \tilde{\varvec{\varepsilon }}) } \, \textrm{d}V \,&\nonumber \\&\qquad + \int _{\varOmega } {\delta \varvec{\varepsilon } : \varvec{\sigma } } \, \textrm{d}V - \int _{\varGamma _u} {\delta \varvec{\lambda } \cdot (\varvec{u} - \varvec{\bar{u}}) } \, \textrm{d}S \,&\nonumber \\&\qquad - \int _{\varGamma _u} {\delta \varvec{u} \cdot \varvec{\lambda } } \, \textrm{d}S - \int _{\varOmega } {\delta \varvec{u} \cdot \varvec{b} } \, \textrm{d}V - \int _{\varGamma _t} {\delta \varvec{u} \cdot \varvec{\bar{t}} } \, \textrm{d}S, \end{aligned}$$
(51)

where \(\delta \varvec{u} \in \mathbb {V}\), \( \delta \varvec{\sigma } \in \mathbb {S}\), \( \delta \tilde{\varvec{\varepsilon }} \in \mathbb {E}\), and \( \delta \varvec{\lambda } \in \varLambda \) are the admissible variations of the displacement \(\varvec{u}\), stress \(\varvec{\sigma }\), assumed strain \(\tilde{\varvec{\varepsilon }}\) and Lagrange multiplier \(\varvec{\lambda }\), respectively, and \(\delta \varvec{\varepsilon } = (\nabla \delta \varvec{u} + \nabla \delta \varvec{u}^T) / 2\). Then, we pose the following variational problem: Find \((\varvec{u},\varvec{\sigma }, \tilde{\varvec{\varepsilon }}, \varvec{\lambda }) \in \mathbb {V} \times \mathbb {S} \times \mathbb {E} \times \varLambda \) such that,

$$\begin{aligned}&\int _{\varOmega } {\delta \tilde{\varvec{\varepsilon }} : (\mathbb {C}: \tilde{\varvec{\varepsilon }} - \varvec{\sigma })} \,\textrm{d}V = 0, \end{aligned}$$
(52a)
$$\begin{aligned}&\int _{\varOmega } {\delta \varvec{\sigma } : (\varvec{\varepsilon } - \tilde{\varvec{\varepsilon }}) } \, \textrm{d}V \, = 0, \end{aligned}$$
(52b)
$$\begin{aligned}&\int _{\varOmega } {\delta \varvec{\varepsilon } : \varvec{\sigma } } \, \textrm{d}V - \int _{\varOmega } {\delta \varvec{u} \cdot \varvec{b} } \, \textrm{d}V - \int _{\varGamma _t} {\delta \varvec{u} \cdot \varvec{\bar{t}} } \, \textrm{d}S \nonumber \\&\quad - \int _{\varGamma _u} {\delta \varvec{u} \cdot \varvec{\lambda } } \, \textrm{d}S = 0, \end{aligned}$$
(52c)
$$\begin{aligned}&\int _{\varGamma _u} {\delta \varvec{\lambda } \cdot (\varvec{u} - \varvec{\bar{u}}) } \, \textrm{d}S = 0, \end{aligned}$$
(52d)

for all \((\delta \varvec{u},\delta \varvec{\sigma }, \delta \tilde{\varvec{\varepsilon }}, \delta \varvec{\lambda }) \in \mathbb {V} \times \mathbb {S} \times \mathbb {E} \times \varLambda \). By the standard argument, it can be shown that Eqs. (52a)–(52d) are equivalent to Eqs. (14) and (16)–(18). Furthermore, carrying out integration by part on the first term of Eq. (52c) gives,

$$\begin{aligned}&\int _{\varOmega } {\delta \varvec{u} \cdot (\nabla \cdot \varvec{\sigma } - \varvec{b}) } \, \textrm{d}V - \int _{\varGamma _t} {\delta \varvec{u} \cdot (\varvec{\sigma } \varvec{n} - \varvec{\bar{t}})} \, \textrm{d}S \nonumber \\&\quad - \int _{\varGamma _u} {\delta \varvec{u} \cdot (\varvec{\sigma } \varvec{n} - \varvec{\lambda })} \, \textrm{d}S = 0. \end{aligned}$$
(53)

From Eq. (53), it illustrates that the physical significance of the Lagrangian term \(\varvec{\lambda }\) is the traction on the essential boundary \(\varGamma _u\). Hence, \(\varvec{\lambda }\) can be replaced by \(\varvec{\sigma } \cdot \varvec{n}\).

Let \(\mathbb {V}^h\), \(\mathbb {S}^h\), \(\mathbb {E}^h\), and \(\varLambda ^h\) be the finite-dimensional subspaces of \(\mathbb {V}\), \(\mathbb {S}\), \(\mathbb {E}\), and \(\varLambda \), respectively, i.e., \(\mathbb {V}^h \subseteq \mathbb {V}\), \(\mathbb {S}^h \subseteq \mathbb {S}\), \(\mathbb {E}^h \subseteq \mathbb {E}\), and \(\varLambda ^h \subseteq \varLambda \). Additionally, let \(\varvec{\varepsilon }^h :=\varvec{\varepsilon }(\varvec{u}^h)\). We have the discrete version of the foregoing variational problem: Find \((\varvec{u}^h,\varvec{\sigma }^h, \tilde{\varvec{\varepsilon }}^h, \varvec{\lambda }^h) \in \mathbb {V}^h \times \mathbb {S}^h \times \mathbb {E}^h \times \varLambda ^h\) such that,

$$\begin{aligned}{} & {} \int _{\varOmega } {\delta \tilde{\varvec{\varepsilon }}^h : (\mathbb {C}: \tilde{\varvec{\varepsilon }}^h - \varvec{\sigma }^h)} \,\textrm{d}V = 0, \end{aligned}$$
(54a)
$$\begin{aligned}{} & {} \int _{\varOmega } {\delta \varvec{\sigma }^h : (\varvec{\varepsilon }^h - \tilde{\varvec{\varepsilon }}^h) } \, \textrm{d}V \, = 0, \end{aligned}$$
(54b)
$$\begin{aligned}{} & {} \int _{\varOmega } {\delta \varvec{\varepsilon }^h : \varvec{\sigma }^h } \, \textrm{d}V - \int _{\varOmega } {\delta \varvec{u}^h \cdot \varvec{b} } \, \textrm{d}V \nonumber \\{} & {} \quad - \int _{\varGamma _t} {\delta \varvec{u}^h \cdot \varvec{\bar{t}} } \, \textrm{d}S - \int _{\varGamma _u} {\delta \varvec{u}^h \cdot \varvec{\lambda }^h } \, \textrm{d}S = 0, \end{aligned}$$
(54c)
$$\begin{aligned}{} & {} \int _{\varGamma _u} {\delta \varvec{\lambda }^h \cdot (\varvec{u}^h - \varvec{\bar{u}}) } \, \textrm{d}S = 0, \end{aligned}$$
(54d)

for all \((\delta \varvec{u}^h,\delta \varvec{\sigma }^h, \delta \tilde{\varvec{\varepsilon }}^h, \delta \varvec{\lambda }^h) \in \mathbb {V}^h \times \mathbb {S}^h \times \mathbb {E}^h \times \varLambda ^h\).

The key step in deriving an assumed strain method is to construct an assumed strain field to satisfy the orthogonality condition [39, 40].

$$\begin{aligned} \int _{\varOmega } {\varvec{\tau } : \varvec{\gamma }} \; \textrm{d}V = 0, \; \text{ for } \text{ all } \; \varvec{\tau } \in \mathbb {S}^h \; \text{ and } \; \varvec{\gamma } \in \mathbb {E}^h_e, \end{aligned}$$
(55)

where \( \mathbb {E}^h_e = \{\varvec{\gamma } \in [L^2(\varOmega )]^{2\times 2}: \varvec{\gamma } = \varvec{\varepsilon }^h - \tilde{\varvec{\varepsilon }}^h\}\). The orthogonality condition states that the space of admissible stress field is orthogonal to the space of the enhanced strain field, i.e., the difference between the compatible strain field and the assumed strain field. Furthermore, the fulfillment of the orthogonality condition allows expressing Eq. (54c) in terms of the assumed strains only by observing that

$$\begin{aligned}&\int _{\varOmega } {\delta \varvec{\varepsilon }^h : \varvec{\sigma }^h } \, \textrm{d}V \\&\quad = \int _{\varOmega } {(\delta \varvec{\varepsilon }^h - \delta \tilde{\varvec{\varepsilon }}^h) : \varvec{\sigma }^h } \, \textrm{d}V + \int _{\varOmega } {\delta \tilde{\varvec{\varepsilon }}^h : \varvec{\sigma }^h } \, \textrm{d}V \\&\quad = \int _{\varOmega } {\delta \tilde{\varvec{\varepsilon }}^h : \varvec{\sigma }^h } \, \textrm{d}V, \end{aligned}$$

and by (54a),

$$\begin{aligned} \int _{\varOmega } {\delta \varvec{\varepsilon }^h : \varvec{\sigma }^h } \, \textrm{d}V = \int _{\varOmega } \delta \tilde{\varvec{\varepsilon }}^h : \mathbb {C}: \tilde{\varvec{\varepsilon }}^h \, \textrm{d}V. \end{aligned}$$
(56)

Now, we consider whether or not the variational problem Eq. (54) with the assumed strain given a priori in Eq. (13) is variationally consistent. Firstly, assume that the discrete stresses \(\varvec{\sigma }^h\) are computed by the relation

$$\begin{aligned} \varvec{\sigma }^h = \mathbb {C}: \tilde{\varvec{\varepsilon }}^h. \end{aligned}$$
(57)

Consequently, Eq. (54a) is fulfilled exactly. Next, we need to verify the orthogonality condition Eq. (55) satisfied by the given assumed strain.

Recall that the problem domain \(\varOmega \) is decomposed into conforming and non-overlapping cells \(\{\varOmega _L\}^{NP}_{L=1}\), and each cell \(\varOmega _L\) is further subdivided into several conforming subcells \(\{\varOmega _{L}^K\}^{NSC}_{{K}=1}\) where NSC is the number of subcells contained in \(\varOmega _L\). The discrete counterpart of the assumed strain presented in Eq. (13) is given by

$$\begin{aligned} \tilde{\varvec{\varepsilon }}^h(\varvec{x}_{L}^{K}) = \frac{1}{A_{L}^{K}} \int _{\varOmega _{L}^K} {\varvec{\varepsilon }(\varvec{u}^h)} \, \textrm{d}V. \end{aligned}$$
(58)

Remark:

  • If a cell \(\varOmega _L\) is not subdivided, the discrete form of Eq. (15) is used instead.

  • The assumed strain is defined to be constant over each subcell \(\varOmega _{L}^K\) or a cell \(\varOmega _L\) if it is not subdivided.

  • The assumed strains \(\tilde{\varvec{\varepsilon }}(\varvec{u}^h)\) only depend on the discrete displacement field \(\varvec{u}^h\).

Now, we prove that the orthogonality condition Eq. (55) is satisfied for the given assumed strain. By assuming the material properties are constant in \( \varOmega _{L}^K\) and using the fact that \(\tilde{\varvec{\varepsilon }}^h(\varvec{x}_{L}^{K})\) is constant in \( \varOmega _{L}^K\),

$$\begin{aligned}&\int _{\varOmega } {\varvec{\sigma }^h : \varvec{\varepsilon }^h } \, \textrm{d}V \\&\quad = \int _{\varOmega } {\tilde{\varvec{\varepsilon }}^h : \mathbb {C} : \varvec{\varepsilon }^h } \, \textrm{d}V \\&\quad = \sum _{L=1}^{NP} \int _{\varOmega _L} {\tilde{\varvec{\varepsilon }}^h : \mathbb {C} : \varvec{\varepsilon }^h } \, \textrm{d}V \\&\quad = \sum _{L=1}^{NP} \sum _{{K}=1}^{NSC} \int _{\varOmega _{L}^K} {\tilde{\varvec{\varepsilon }}^h (\varvec{x}_{L}^{K}): \mathbb {C} : {\varvec{\varepsilon }(\varvec{u}^h)} } \, \textrm{d}V \\&\quad = \sum _{L=1}^{NP} \sum _{{K}=1}^{NSC} \tilde{\varvec{\varepsilon }}^h (\varvec{x}_{L}^{K}): \mathbb {C} : \int _{\varOmega _{L}^K} {\varvec{\varepsilon }(\varvec{u}^h) } \, \textrm{d}V \\&\quad = \sum _{L=1}^{NP} \sum _{{K}=1}^{NSC} \tilde{\varvec{\varepsilon }}^h (\varvec{x}_{L}^{K}): \mathbb {C} : \tilde{\varvec{\varepsilon }}^h(\varvec{x}_{L}^{K}) \, A_{L}^K \\&\quad = \sum _{L=1}^{NP} \sum _{{K}=1}^{NSC} \int _{\varOmega _{L}^K} \tilde{\varvec{\varepsilon }}^h (\varvec{x}_{L}^{K}): \mathbb {C} : \tilde{\varvec{\varepsilon }}^h(\varvec{x}_{L}^{K}) \, \textrm{d}V \\&\quad = \int _{\varOmega } {\tilde{\varvec{\varepsilon }}^h : \mathbb {C} : \tilde{\varvec{\varepsilon }}^h } \, \textrm{d}V \\&\quad = \int _{\varOmega } {\varvec{\sigma }^h : \tilde{\varvec{\varepsilon }}^h } \, \textrm{d}V, \end{aligned}$$

where Eq. (58) is used in the fifth equality.

Therefore, the orthogonality condition is achieved with the use of the given assumed strain. Finally, using the fact that \(\varvec{\lambda }^h = \varvec{\sigma }^h \varvec{n}\) on \(\varGamma _u\) and Eq. (56) allows rewriting Eq. (54) into a single equation

$$\begin{aligned}&\int _{\varOmega } {\delta \tilde{\varvec{\varepsilon }}^h : \mathbb {C}: \tilde{\varvec{\varepsilon }}^h} \, \textrm{d}V - \int _{\varOmega } {\delta \varvec{u}^h \cdot \varvec{b} } \, \textrm{d}V - \int _{\varGamma _t} {\delta \varvec{u}^h \cdot \varvec{\bar{t}} } \, \textrm{d}S \nonumber \\&\quad - \int _{\varGamma _u} {\delta \varvec{u}^h \cdot \varvec{t}^h} \, \textrm{d}S - \int _{\varGamma _u} {\delta \varvec{t}^h \cdot (\varvec{u}^h - \varvec{\bar{u}}) } \, \textrm{d}S = 0, \end{aligned}$$
(59)

where \(\varvec{t}^h = \varvec{\sigma }^h \varvec{n} = (\mathbb {C}: \tilde{\varvec{\varepsilon }}^h) \cdot \varvec{n}\). To improve the coercivity of the variational formulation in Eq. (59), adding a penalty-like term to it yields [47]

$$\begin{aligned}&\int _{\varOmega } {\delta \tilde{\varvec{\varepsilon }}^h : \mathbb {C}: \tilde{\varvec{\varepsilon }}^h} \, \textrm{d}V - \int _{\varGamma _u} {\delta \varvec{u}^h \cdot \varvec{t}^h} \, \textrm{d}S \nonumber \\&\quad - \int _{\varGamma _u} {\delta \varvec{t}^h \cdot (\varvec{u}^h - \varvec{\bar{u}}) } \, \textrm{d}S + \; \alpha \int _{\varGamma _u} {\delta \varvec{u}^h \cdot (\varvec{u}^h - \varvec{\bar{u}}) } \, \textrm{d}S \nonumber \\&\quad = \int _{\varOmega } {\delta \varvec{u}^h \cdot \varvec{b} } \, \textrm{d}V + \int _{\varGamma _t} {\delta \varvec{u}^h \cdot \varvec{\bar{t}} } \, \textrm{d}S. \end{aligned}$$
(60)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.A., Tanaka, S. & Bui, T.Q. Material interface modeling by the enriched RKPM with stabilized nodal integration. Comp. Part. Mech. 10, 1733–1757 (2023). https://doi.org/10.1007/s40571-023-00585-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-023-00585-y

Keywords

Navigation