Skip to main content
Log in

The effects of smoothing length on the onset of wave breaking in smoothed particle hydrodynamics (SPH) simulations of highly directionally spread waves

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Ocean wave breaking is a difficult-to-model oceanographic process, which has implications for extreme wave statistics, the dissipation of wave energy, and air–sea interaction. Numerical methods capable of reliably simulating real-world directionally spread breaking waves are useful for investigating the physics of wave breaking and for the design of offshore structures and floating bodies. Smoothed particle hydrodynamics is capable of modelling highly steep and overturning free surfaces, which makes it a promising method for simulating breaking waves. This paper investigates the effect of smoothing length on simulated wave breaking in both following and crossing seas. To do so, we reproduce numerically the experiments of highly directionally spread breaking waves in McAllister et al. (J Fluid Mech 860:767–786, 2019. https://doi.org/10.1017/jfm.2018.886) using a range of normalised smoothing lengths: \(h/d_p=1.4\), 1.7, 2.0, 2.3, with h smoothing length and \(d_p\) particle spacing. The smallest smoothing length we use appears to adversely affect the fidelity of the simulated surface elevation, so that the tallest wave crest observed in experiments is not fully reproduced (coefficient of determination \(r^2\approx 0.7\)). For smoothing lengths \(h/d_p=1.7\), 2.0, and 2.3, the experiments are well reproduced (\(r^2\ge 0.88\)); in these simulations smoothing length predominantly affects the spatial extent and duration of breaking. Qualitative and quantitative comparison of our simulations shows that values of \(h/d_p\) in the range \(1.7{-}2\) best reproduce the wave breaking phenomena observed in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Babanin A (2011) Breaking and dissipation of ocean surface waves. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511736162

    Book  MATH  Google Scholar 

  2. Khayyer A, Gotoh H (2008) Development of CMPS method for accurate water-surface tracking in breaking waves. Coast Eng J 50(2):179–207. https://doi.org/10.1142/S0578563408001788

    Article  Google Scholar 

  3. Saruwatari A, Watanabe Y, Ingram DM (2009) Scarifying and fingering surfaces of plunging jets. Coast Eng 56(11):1109–1122. https://doi.org/10.1016/j.coastaleng.2009.08.007

    Article  Google Scholar 

  4. Xie J, Nistor I, Murty T (2012) A corrected 3-D SPH method for breaking tsunami wave modelling. Nat Hazards 60(1):81–100

    Article  Google Scholar 

  5. He F, Zhang H, Huang C, Liu M (2020) Numerical investigation of the solitary wave breaking over a slope by using the finite particle method. Coast Eng 156:103617. https://doi.org/10.1016/j.coastaleng.2019.103617

  6. Wei Z, Dalrymple RA, Xu M, Garnier R, Derakhti M (2017) Short-crested waves in the surf zone. J Geophys Res Oceans 122(5):4143–4162. https://doi.org/10.1002/2016JC012485

    Article  Google Scholar 

  7. Lowe R, Buckley M, Altomare C, Rijnsdorp D, Yao Y, Suzuki T, Bricker J (2019) Numerical simulations of surf zone wave dynamics using Smoothed Particle Hydrodynamics. Ocean Model 144:101481. https://doi.org/10.1016/j.ocemod.2019.101481

    Article  Google Scholar 

  8. Mostert W, Deike L (2020) Inertial energy dissipation in shallow-water breaking waves. J Fluid Mech 890:A12. https://doi.org/10.1017/jfm.2020.83

    Article  MathSciNet  MATH  Google Scholar 

  9. De Padova D, Ben Meftah M, De Serio F, Mossa M, Sibilla S (2020) Characteristics of breaking vorticity in spilling and plunging waves investigated numerically by SPH. Environ Fluid Mech 20(2):233–260. https://doi.org/10.1007/s10652-019-09699-5

    Article  Google Scholar 

  10. Lin P, Liu PLF (1998) A numerical study of breaking waves in the surf zone. J Fluid Mech 359(1):239–264

    Article  Google Scholar 

  11. Jose J, Choi SJ, Giljarhus KET, Gudmestad OT (2017) A comparison of numerical simulations of breaking wave forces on a monopile structure using two different numerical models based on finite difference and finite volume methods. Ocean Eng 137:78–88

    Article  Google Scholar 

  12. Sun PN, Luo M, Le Touzé D, Zhang AM (2019) The suction effect during freak wave slamming on a fixed platform deck: smoothed particle hydrodynamics simulation and experimental study. Phys Fluids 31(11):117108

    Article  Google Scholar 

  13. Yan B, Luo M, Bai W (2019) An experimental and numerical study of plunging wave impact on a box-shape structure. Mar Struct 66:272–287

    Article  Google Scholar 

  14. Chen X, Chen Q, Chen Z, Cai S, Zhuo X, Lv J (2021) Numerical modeling of the interaction between submerged floating tunnel and surface waves. Ocean Eng 220:108494

    Article  Google Scholar 

  15. Luo M, Khayyer A, Lin P (2021) Particle methods in ocean and coastal engineering. Appl Ocean Res 114:102734. https://doi.org/10.1016/j.apor.2021.102734

    Article  Google Scholar 

  16. Sun PN, Le Touzé D, Oger G, Zhang AM (2021) An accurate FSI-SPH modeling of challenging fluid-structure interaction problems in two and three dimensions. Ocean Eng 221:108552. https://doi.org/10.1016/j.oceaneng.2020.108552

    Article  Google Scholar 

  17. Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J Hydraul Res 54(1):1–26. https://doi.org/10.1080/00221686.2015.1119209

    Article  Google Scholar 

  18. Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39(1):201–225. https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  19. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49. https://doi.org/10.1016/0021-9991(88)90002-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial flow. Annu Rev Fluid Mech 31(1):567–603. https://doi.org/10.1146/annurev.fluid.31.1.567

    Article  MathSciNet  Google Scholar 

  21. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024. https://doi.org/10.1086/112164

    Article  Google Scholar 

  22. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389. https://doi.org/10.1093/mnras/181.3.375

    Article  MATH  Google Scholar 

  23. Koshizuka S (1995) A particle method for incompressible viscous flow with fluid fragmentation. Comput Fluid Dyn J 4:29–46

    Google Scholar 

  24. Altomare C, Domínguez J, Crespo A, González-Cao J, Suzuki T, Gómez-Gesteira M, Troch P (2017) Long-crested wave generation and absorption for SPH-based DualSPHysics model. Coast Eng 127:37–54. https://doi.org/10.1016/j.coastaleng.2017.06.004

    Article  Google Scholar 

  25. Draycott S, Li Y, Stansby P, Adcock T, van den Bremer T (2022) Harmonic-induced wave breaking due to abrupt depth transitions: an experimental and numerical study. Coast Eng 171:104041. https://doi.org/10.1016/j.coastaleng.2021.104041

    Article  Google Scholar 

  26. Crespo A, Gómez-Gesteira M, Dalrymple R (2007) Boundary conditions generated by dynamic particles in SPH methods. Comput Mater Contin 5(3):173–184

    MathSciNet  MATH  Google Scholar 

  27. Monaghan J (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406. https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  28. Lo EY, Shao S (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method

  29. Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22(104):745–762

    Article  MathSciNet  Google Scholar 

  30. Shadloo MS, Zainali A, Yildiz M, Suleman A (2012) A robust weakly compressible SPH method and its comparison with an incompressible SPH. Int J Numer Methods Eng 89(8):939–956. https://doi.org/10.1002/nme.3267

    Article  MathSciNet  MATH  Google Scholar 

  31. Hérault A, Bilotta G, Dalrymple RA (2010) SPH on GPU with CUDA. J Hydraul Res 48(sup1):74–79. https://doi.org/10.1080/00221686.2010.9641247

    Article  Google Scholar 

  32. Cercos-Pita J (2015) Aquagpusph, a new free 3D SPH solver accelerated with OPENCL. Comput Phys Commun 192:295–312. https://doi.org/10.1016/j.cpc.2015.01.026

    Article  MathSciNet  MATH  Google Scholar 

  33. Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183(12):2570–2580. https://doi.org/10.1016/j.cpc.2012.07.006

    Article  MathSciNet  Google Scholar 

  34. Monaghan J, Gingold R (1983) Shock simulation by the particle method SPH. J Comput Phys 52(2):374–389. https://doi.org/10.1016/0021-9991(83)90036-0

    Article  MATH  Google Scholar 

  35. Belytschko T, Xiao S (2002) Stability analysis of particle methods with corrected derivatives. Comput Math Appl 43(3):329–350. https://doi.org/10.1016/S0898-1221(01)00290-5

    Article  MathSciNet  MATH  Google Scholar 

  36. Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180(6):861–872. https://doi.org/10.1016/j.cpc.2008.12.004

    Article  MathSciNet  MATH  Google Scholar 

  37. Lind SJ, Rogers BD, Stansby PK (2020) Review of smoothed particle hydrodynamics: towards converged Lagrangian flow modelling. Proc R Soc A Math Phys Eng Sci 476(2241):20190801. https://doi.org/10.1098/rspa.2019.0801

    Article  MathSciNet  MATH  Google Scholar 

  38. Monaghan J (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311. https://doi.org/10.1006/jcph.2000.6439

    Article  MATH  Google Scholar 

  39. Sun PN, Colagrossi A, Zhang AM (2018) Numerical simulation of the self-propulsive motion of a fishlike swimming foil using the \(\delta ^+\)-SPH model. Theor Appl Mech Lett 8(2):115–125. https://doi.org/10.1016/j.taml.2018.02.007

    Article  Google Scholar 

  40. Lyu HG, Sun PN (2022) Further enhancement of the particle shifting technique: towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows. Appl Math Model 101:214–238. https://doi.org/10.1016/j.apm.2021.08.014

    Article  MathSciNet  MATH  Google Scholar 

  41. Sun P, Colagrossi A, Marrone S, Antuono M, Zhang A (2018) Multi-resolution delta-plus-SPH with tensile instability control: towards high Reynolds number flows. Comput Phys Commun 224:63–80. https://doi.org/10.1016/j.cpc.2017.11.016

    Article  MathSciNet  Google Scholar 

  42. Xu X, Yu P (2018) A technique to remove the tensile instability in weakly compressible SPH. Comput Mech 62(5):963–990. https://doi.org/10.1007/s00466-018-1542-4

    Article  MathSciNet  MATH  Google Scholar 

  43. You Y, Khayyer A, Zheng X, Gotoh H, Ma Q (2021) Enhancement of \(\delta \)-SPH for ocean engineering applications through incorporation of a background mesh scheme. Appl Ocean Res 110:102508. https://doi.org/10.1016/j.apor.2020.102508

    Article  Google Scholar 

  44. Koshizuka S, Nobe A, Oka Y (1998) Numerical analysis of breaking waves using the moving particle semi-implicit method. Int J Numer Methods Fluids 26(7):751–769. https://doi.org/10.1002/(SICI)1097-0363(19980415)26:7<751::AID-FLD671>3.0.CO;2-C

  45. Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125(3):145–155. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:3(145)

    Article  Google Scholar 

  46. Farahani RJ, Dalrymple RA (2014) Three-dimensional reversed horseshoe vortex structures under broken solitary waves. Coast Eng 91:261–279. https://doi.org/10.1016/j.coastaleng.2014.06.006

    Article  Google Scholar 

  47. Meringolo DD, Liu Y, Wang XY, Colagrossi A (2018) Energy balance during generation, propagation and absorption of gravity waves through the \(\delta \)-LES-SPH model. Coast Eng 140:355–370. https://doi.org/10.1016/j.coastaleng.2018.07.007

    Article  Google Scholar 

  48. Gotoh H (2001) Sub-particle-scale turbulence model for the MPS method-Lagrangian flow model for hydraulic engineering. Comput Fluid Dyn J 9(4):339–347

    Google Scholar 

  49. Dalrymple R, Rogers B (2006) Numerical modeling of water waves with the SPH method. Coast Eng 53(2):141–147. https://doi.org/10.1016/j.coastaleng.2005.10.004

    Article  Google Scholar 

  50. Crespo AJ, Domínguez JM, Rogers BD, Gómez-Gesteira M, Longshaw S, Canelas R, Vacondio R, Barreiro A, García-Feal O (2015) DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216. https://doi.org/10.1016/j.cpc.2014.10.004

    Article  MATH  Google Scholar 

  51. Roselli RAR, Vernengo G, Brizzolara S, Guercio R (2019) SPH simulation of periodic wave breaking in the surf zone—a detailed fluid dynamic validation. Ocean Eng 176:20–30. https://doi.org/10.1016/j.oceaneng.2019.02.013

    Article  Google Scholar 

  52. Khayyer A, Gotoh H, Shao S (2008) Corrected Incompressible SPH method for accurate water-surface tracking in breaking waves. Coast Eng 55(3):236–250. https://doi.org/10.1016/j.coastaleng.2007.10.001

    Article  Google Scholar 

  53. Padova DD, Dalrymple RA, Mossa M (2014) Analysis of the artificial viscosity in the smoothed particle hydrodynamics modelling of regular waves. J Hydraul Res 52(6):836–848. https://doi.org/10.1080/00221686.2014.932853

    Article  Google Scholar 

  54. Rota Roselli RA, Vernengo G, Altomare C, Brizzolara S, Bonfiglio L, Guercio R (2018) Ensuring numerical stability of wave propagation by tuning model parameters using genetic algorithms and response surface methods. Environ Model Softw 103:62–73. https://doi.org/10.1016/j.envsoft.2018.02.003

    Article  Google Scholar 

  55. Forristall GZ, Ewans KC (1998) Worldwide measurements of directional wave spreading. J Atmos Ocean Tech 15(2):440–469

    Article  Google Scholar 

  56. Goda Y (1999) A comparative review on the functional forms of directional wave spectrum. Coast Eng J 41(1):1–20. https://doi.org/10.1142/S0578563499000024

    Article  Google Scholar 

  57. Toffoli A, Lefèvre J, Bitner-Gregersen E, Monbaliu J (2005) Towards the identification of warning criteria: analysis of a ship accident database. Appl Ocean Res 27(6):281–291. https://doi.org/10.1016/j.apor.2006.03.003

    Article  Google Scholar 

  58. Cavaleri L, Bertotti L, Torrisi L, Bitner-Gregersen E, Serio M, Onorato M (2012) Rogue waves in crossing seas: the Louis Majesty accident. J Geophys Res Oceans. https://doi.org/10.1029/2012JC007923

    Article  Google Scholar 

  59. Trulsen K, Nieto Borge JC, Gramstad O, Aouf L, Lefèvre J (2015) Crossing sea state and rogue wave probability during the prestige accident. J Geophys Res Oceans 120(10):7113–7136. https://doi.org/10.1002/2015JC011161

    Article  Google Scholar 

  60. Zhang Z, Li XM (2017) Global ship accidents and ocean swell-related sea states. Nat Hazard 17(11):2041–2051. https://doi.org/10.5194/nhess-17-2041-2017

    Article  Google Scholar 

  61. McAllister ML, Draycott S, Adcock TAA, Taylor PH, van den Bremer TS (2019) Laboratory recreation of the Draupner wave and the role of breaking in crossing seas. J Fluid Mech 860:767–786. https://doi.org/10.1017/jfm.2018.886

  62. Haver S (2004) A possible freak wave event measured at the Draupner Jacket, January 1 1995. Brest

  63. Ingram D, Wallace R, Robinson A, Bryden I (2014) The design and commissioning of the first, circular, combined current and wave test basin. In: Proceedings of oceans 2014 MTS/IEEE Taipei, Taiwan. Institute of Electrical and Electronics Engineers (IEEE), United States

  64. Kanehira T, McAllister M, Draycott S, Nakashima T, Taniguchi N, Ingram D, van den Bremer T, Mutsuda H (2021) Highly directionally spread, overturning breaking waves modelled with Smoothed Particle Hydrodynamics: A case study involving the Draupner wave. Ocean Model. https://doi.org/10.1016/j.ocemod.2021.101822

    Article  Google Scholar 

  65. Domínguez JM, Fourtakas G, Altomare C, Canelas RB, Tafuni A, García-Feal O, Martínez-Estévez I, Mokos A, Vacondio R, Crespo AJ et al (2021) DualSPHysics: from fluid dynamics to multiphysics problems. Comput Particle Mech 25:1–25

    Google Scholar 

  66. Kanehira T, Mutsuda H, Doi Y, Taniguchi N, Draycott S, Ingram D (2019) Development and experimental validation of a multidirectional circular wave basin using smoothed particle hydrodynamics. Coast Eng J 61(1):109–120. https://doi.org/10.1080/21664250.2018.1560922

    Article  Google Scholar 

  67. Kanehira T, Mutsuda H, Draycott S, Taniguchi N, Nakashima T, Doi Y, Ingram D (2020) Numerical re-creation of multi-directional waves in a circular basin using a particle based method. Ocean Eng 209:107446. https://doi.org/10.1016/j.oceaneng.2020.107446

    Article  Google Scholar 

  68. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4(1):389–396. https://doi.org/10.1007/BF02123482

    Article  MathSciNet  MATH  Google Scholar 

  69. Lo EY, Shao S (2002) Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Appl Ocean Res 24(5):275–286. https://doi.org/10.1016/S0141-1187(03)00002-6

    Article  Google Scholar 

  70. Leimkuhler B, Patrick GW (1996) A symplectic integrator for Riemannian manifolds. J Nonlinear Sci 6(4):367–384. https://doi.org/10.1007/BF02433475

    Article  MathSciNet  MATH  Google Scholar 

  71. Perlin M, Choi W, Tian Z (2013) Breaking waves in deep and intermediate waters. Annu Rev Fluid Mech 45(1):115–145. https://doi.org/10.1146/annurev-fluid-011212-140721

    Article  MathSciNet  MATH  Google Scholar 

  72. Chang KA, Liu PLF (1998) Velocity, acceleration and vorticity under a breaking wave. Phys Fluids 10(1):327–329. https://doi.org/10.1063/1.869544

    Article  Google Scholar 

  73. Grue J, Jensen A (2006) Experimental velocities and accelerations in very steep wave events in deep water. Eur J Mech B/Fluids 25(5):554–564

    Article  MathSciNet  Google Scholar 

  74. Quinlan NJ, Basa M, Lastiwka M (2006) Truncation error in mesh-free particle methods. Int J Numer Methods Eng 66(13):2064–2085. https://doi.org/10.1002/nme.1617

    Article  MathSciNet  MATH  Google Scholar 

  75. Oger G, Doring M, Alessandrini B, Ferrant P (2007) An improved SPH method: towards higher order convergence. J Comput Phys 225(2):1472–1492. https://doi.org/10.1016/j.jcp.2007.01.039

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from JSPS KAKENHI Grant Number 19J13966, 20K22396, and 20H02369. TSvdB acknowledges support from a Royal Academy of Engineering Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidemi Mutsuda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanehira, T., McAllister, M.L., Draycott, S. et al. The effects of smoothing length on the onset of wave breaking in smoothed particle hydrodynamics (SPH) simulations of highly directionally spread waves. Comp. Part. Mech. 9, 1031–1047 (2022). https://doi.org/10.1007/s40571-022-00463-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00463-z

Keywords

Navigation