Skip to main content
Log in

Bridging length scales in granular materials using convolutional neural networks

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Granular materials are complex systems whose macroscopic mechanics are governed by particles at the grain-scale. The need to understand their grain-scale behavior has motivated significant experimental and modeling efforts. Bridging the grain-scale with the continuum scale is important in order to develop constitutive theories based on grain-scale behavior, as well as for interpreting the results of grain-scale models and experiments from a macroscopic context. In this work, we present a new data-driven framework based on convolutional neural networks to bridge the grain-scale and continuum scale in granular materials. We use this framework to obtain a micromechanical model of stress and demonstrate that spatial correlations at the grain-scale are critical for bridging length scales. Our results suggest that it is possible to learn data-driven relationships between the grain-scale and macroscale even if we have limited knowledge about the physical state of a granular system. We also observed that it is possible to train a model to predict macroscopic stress using only a subset of the contact data for each time step. This points to the discovery of a new pattern in granular systems, whereby any spatially correlated subset of contact data is sufficient to model macroscopic stress, regardless of how much force they may be carrying. Finally, we demonstrated that our framework is robust with potential for generalizability in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data were obtained from the work done by Marteau and Andrade [42].

References

  1. Puzrin AM (2012) Constitutive modelling in geomechanics. Springer, Berlin

    Book  Google Scholar 

  2. Andrade JE, Mital U (2019) Multiscale and Multiphysics Modeling of Soils. In: Lu N, Mitchell JK (eds) Geotechnical fundamentals for addressing new world challenges. Springer, Cham, pp 141–168

    Chapter  Google Scholar 

  3. Alikarami R, Andò E, Gkiousas-Kapnisis M et al (2015) Strain localisation and grain breakage in sand under shearing at high mean stress: insights from in situ X-ray tomography. Acta Geotech 10:15–30. https://doi.org/10.1007/s11440-014-0364-6

    Article  Google Scholar 

  4. Kim FH, Penumadu D, Kardjilov N, Manke I (2016) High-resolution X-ray and neutron computed tomography of partially saturated granular materials subjected to projectile penetration. Int J Impact Eng 89:72–82. https://doi.org/10.1016/j.ijimpeng.2015.11.008

    Article  Google Scholar 

  5. Lenoir N, Bornert M, Desrues J et al (2007) Volumetric digital image correlation applied to X-Ray microtomography Images from triaxial compression tests on argillaceous rock. Strain 43:193–205. https://doi.org/10.1111/j.1475-1305.2007.00348.x

    Article  Google Scholar 

  6. Semnani SJ, Borja RI (2017) Quantifying the heterogeneity of shale through statistical combination of imaging across scales. Acta Geotech 12:1193–1205. https://doi.org/10.1007/s11440-017-0576-7

    Article  Google Scholar 

  7. Wildenschild D, Sheppard AP (2013) X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv Water Resour 51:217–246. https://doi.org/10.1016/j.advwatres.2012.07.018

    Article  Google Scholar 

  8. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29:47–65

    Article  Google Scholar 

  9. Iwashita K, Oda M (1998) Rolling resistance at contacts in simulation of shear band development by DEM. J Eng Mech 124:285–292

    Article  Google Scholar 

  10. Jerves AX, Kawamoto RY, Andrade JE (2016) Effects of grain morphology on critical state: a computational analysis. Acta Geotech 11:493–503. https://doi.org/10.1007/s11440-015-0422-8

    Article  Google Scholar 

  11. Kawamoto R, Andò E, Viggiani G, Andrade JE (2018) All you need is shape: predicting shear banding in sand with LS-DEM. J Mech Phys Solids 111:375–392. https://doi.org/10.1016/j.jmps.2017.10.003

    Article  Google Scholar 

  12. Mital U, Kawamoto R, Andrade JE (2019) Effect of fabric on shear wave velocity in granular soils. Acta Geotech. https://doi.org/10.1007/s11440-019-00766-1

    Article  Google Scholar 

  13. Mital U, Andrade JE (2016) Mechanics of origin of flow liquefaction instability under proportional strain triaxial compression. Acta Geotech 11:1015–1025. https://doi.org/10.1007/s11440-015-0430-8

    Article  Google Scholar 

  14. Nicot F, Sibille L, Donze F, Darve F (2007) From microscopic to macroscopic second-order work in granular assemblies. Mech Mater 39:664–684

    Article  Google Scholar 

  15. O’Donovan J, O’Sullivan C, Marketos G, Muir Wood D (2015) Analysis of bender element test interpretation using the discrete element method. Granular Matter 17:197–216. https://doi.org/10.1007/s10035-015-0552-6

    Article  Google Scholar 

  16. Radjai F, Wolf DE, Jean M, Moreau J-J (1998) Bimodal character of stress transmission in granular packings. Phys Rev Lett 80:61

    Article  Google Scholar 

  17. Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39:601–614

    Article  Google Scholar 

  18. Tordesillas A, Muthuswamy M (2009) On the modeling of confined buckling of force chains. J Mech Phys Solids 57:706–727

    Article  MathSciNet  Google Scholar 

  19. Bagi K (2006) Analysis of microstructural strain tensors for granular assemblies. Int J Solids Struct 43:3166–3184. https://doi.org/10.1016/j.ijsolstr.2005.07.016

    Article  MATH  Google Scholar 

  20. Christoffersen J, Mehrabadi MM, Nemat-Nasser S (1981) A micromechanical description of granular material behavior. J Appl Mech 48:339. https://doi.org/10.1115/1.3157619

    Article  MATH  Google Scholar 

  21. Rothenburg L, Selvadurai APS (1981) A micromechanical definition of the Cauchy stress tensor for particulate media. In: Selvadurai APS (ed) Proceedings of the international symposium on the mechanical behaviour of structured media. Elsevier, Amsterdam, pp 469–486

    Google Scholar 

  22. Zhu HP, Yu AB (2002) Averaging method of granular materials. Phys Rev E 66:021302. https://doi.org/10.1103/PhysRevE.66.021302

    Article  Google Scholar 

  23. Li X, Yu HS, Li XS (2009) Macro–micro relations in granular mechanics. Int J Solids Struct 46:4331–4341. https://doi.org/10.1016/j.ijsolstr.2009.08.018

    Article  MATH  Google Scholar 

  24. Goldhirsch I (2010) Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granular Matter 12:239–252. https://doi.org/10.1007/s10035-010-0181-z

    Article  MATH  Google Scholar 

  25. Kruyt NP, Rothenburg L (2004) Kinematic and static assumptions for homogenization in micromechanics of granular materials. Mech Mater 36:1157–1173. https://doi.org/10.1016/j.mechmat.2002.12.001

    Article  Google Scholar 

  26. Chen H (2019) Constructing continuum-like measures based on a nonlocal lattice particle model: Deformation gradient, strain and stress tensors. Int J Solids Struct 169:177–186. https://doi.org/10.1016/j.ijsolstr.2019.04.014

    Article  Google Scholar 

  27. Eliáš J (2020) Elastic properties of isotropic discrete systems: connections between geometric structure and Poisson’s ratio. Int J Solids Struct 191–192:254–263. https://doi.org/10.1016/j.ijsolstr.2019.12.012

    Article  Google Scholar 

  28. Yan B, Regueiro RA (2019) Definition and symmetry of averaged stress tensor in granular media and its 3D DEM inspection under static and dynamic conditions. Int J Solids Struct 161:243–266. https://doi.org/10.1016/j.ijsolstr.2018.11.021

    Article  Google Scholar 

  29. Nejadsadeghi N, Misra A (2020) Extended granular micromechanics approach: a micromorphic theory of degree n. Math Mech Solids 25:407–429. https://doi.org/10.1177/1081286519879479

    Article  MathSciNet  MATH  Google Scholar 

  30. Pedregosa F, Varoquaux G, Gramfort A et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  31. Martín Abadi, Ashish Agarwal, Paul Barham, et al (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems

  32. Paszke A, Gross S, Massa F et al (2019) PyTorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A et al (eds) Advances in Neural Information Processing Systems 32. Curran Associates, Inc., NY, pp 8024–8035

    Google Scholar 

  33. Ghaboussi J, Garrett JH, Wu X (1991) Knowledge-based modeling of material behavior with neural networks. J Eng Mech 117:132–153. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132)

    Article  Google Scholar 

  34. Zhu J-H, Zaman MM, Anderson SA (1998) Modeling of soil behavior with a recurrent neural network. Can Geotech J 35:15

    Article  Google Scholar 

  35. Wang K, Sun W (2019) Meta-modeling game for deriving theory-consistent, microstructure-based traction–separation laws via deep reinforcement learning. Comput Methods Appl Mech Eng 346:216–241. https://doi.org/10.1016/j.cma.2018.11.026

    Article  MathSciNet  MATH  Google Scholar 

  36. Heider Y, Wang K, Sun W (2020) SO(3)-invariance of informed-graph-based deep neural network for anisotropic elastoplastic materials. Comput Methods Appl Mech Eng 363:112875. https://doi.org/10.1016/j.cma.2020.112875

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang H, Guo X, Tang S, Liu WK (2019) Derivation of heterogeneous material laws via data-driven principal component expansions. Comput Mech 64:365–379. https://doi.org/10.1007/s00466-019-01728-w

    Article  MathSciNet  MATH  Google Scholar 

  38. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press

    MATH  Google Scholar 

  39. Nielsen MA (2015) Neural networks and deep learning. Determination Press

    Google Scholar 

  40. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536. https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  41. Kingma DP, Ba J (2017) Adam: A Method for Stochastic Optimization. arXiv:14126980 [cs]

  42. Marteau E, Andrade JE (2017) A novel experimental device for investigating the multiscale behavior of granular materials under shear. Granular Matter 19:77. https://doi.org/10.1007/s10035-017-0766-x

    Article  Google Scholar 

  43. Chollet F, others (2015) Keras. https://github.com/fchollet/keras

  44. Oda M, Iwashita K (1999) Mechanics of granular materials: an introduction. Balkema, Rotterdam

    Google Scholar 

  45. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T (eds) Computer vision—ECCV 2014. Springer International Publishing, Cham, pp 818–833

    Chapter  Google Scholar 

  46. Kim B, Kim H, Kim K et al (2019) Learning not to learn: training deep neural networks with biased data. 2019 IEEE/CVF conference on computer vision and pattern recognition (CVPR). IEEE, Long Beach, pp 9004–9012

    Chapter  Google Scholar 

  47. Raissi M, Perdikaris P, Karniadakis GE (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707. https://doi.org/10.1016/j.jcp.2018.10.045

    Article  MathSciNet  MATH  Google Scholar 

  48. Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions. 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Boston, pp 1–9

    Google Scholar 

  49. He K, Zhang X, Ren S, Sun J (2016) Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp 770–778

  50. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. 2015 IEEE conference on computer vision and pattern recognition (CVPR). IEEE, Boston, pp 3431–3440

    Chapter  Google Scholar 

Download references

Funding

The authors acknowledge funding support by Army Research Office, under Grant Number W911NF-17-1-0212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utkarsh Mital.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mital, U., Andrade, J.E. Bridging length scales in granular materials using convolutional neural networks. Comp. Part. Mech. 9, 221–235 (2022). https://doi.org/10.1007/s40571-021-00405-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00405-1

Keywords

Navigation