Skip to main content

Advertisement

Log in

Population balance modeling: application in nanoparticle formation through rapid expansion of supercritical solution

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The rapid expansion of supercritical solution (RESS) process is a novel method to produce free-solvent particles with narrow particle size distribution (PSD), and it is offered to replace conventional particle formation methods. The present study is aimed to investigate the numerical simulation of the RESS process comprising hydrodynamic and particle formation and solving population balance equation to compute PSD of solute-supercritical CO2 (SC-CO2) systems. Mass, momentum and energy balances in addition to an accurate equation of state are used to calculate hydrodynamic behavior of SC-CO2 at various conditions through a nozzle and supersonic free jet with considering heat exchange in the nozzle. The solubility of TBTPP (5, 10, 15, 20-tetrakis (3, 5-bis (trifluoromethyl) phenyl) porphyrin) in SC-CO2 is calculated using the Soave–Redlich–Kwong equation of state with van der Waals mixing rule. After that, supersaturation and nucleation of TBTPP and three other drugs, i.e., aspirin, salicylic acid and ibuprofen, are investigated. Eventually, the method of moments is used to solve the population balance equations to determine PSD of the solutes. The results are presented with and without coagulation. Furthermore, the effect of nozzle length and pre-expansion temperature on PSD is studied. Furthermore, to improve the results of coagulation model on PSD, collision frequency and lognormal function are modified. The modifications improve the coagulation results. The average absolute percent deviation of TBTPP solubility is 1.86. The CO2 hydrodynamic behavior shows the same trend as reported in the literature. Moreover, results of PSD calculation with coagulation indicated there is a good agreement with the experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Nelson WM (2003) Green solvents for chemistry: perspectives and practice. Oxford University Press

  2. Bagheri H, Ghader S (2017) J Mol Liq 236:172–183

    Article  Google Scholar 

  3. Bagheri H, Mohebbi A (2017) Korean J Chem Eng 34:2686–2702

    Article  Google Scholar 

  4. Huang Zh, Lu WD, Kawi S, Chiew YC (2004) J Chem Eng Data 49:1323–1327

    Article  Google Scholar 

  5. Park SJ, Kwak TY, Mansoori GA (1987) Int J Thermophys 8:449–471

    Article  Google Scholar 

  6. Sheikhi-Kouhsar M, Bagheri H, Raeissi S (2015) Fluid Phase Equilib 395:51–57

    Article  Google Scholar 

  7. Reverchon E, Adami R, Caputo G, Marco ID (2008) J Supercrit Fluids 47:70–84

    Article  Google Scholar 

  8. Ye X, Wai CM (2003) J Chem Educ 80:198–204

    Article  Google Scholar 

  9. Lotfollahi MN, Modarress H, Mansoori GA (2001) J Phys Chem B 105:9834–9839

    Article  Google Scholar 

  10. Bagheri H, Mansoori GA, Hashemipour H (2018) J Mol Liq 261:174–188

    Article  Google Scholar 

  11. Bagheri H, Hashemipour H, Mirzaie M (2019) J Mol Liq 281:490–505

    Article  Google Scholar 

  12. Reverchon E, Della Porta G, Taddeo R, Pallado P, Stassi A (1995) Ind Eng Chem Res 34:4087–4091

    Article  Google Scholar 

  13. Kwauk X, Debenedetti PG (1993) J Aerosol Sci 24:445–469

    Article  Google Scholar 

  14. Helfgen B, Hils P, Holzknecht Ch, Türk M, Schaber K (2001) J Aerosol Sci 32:295–319

    Article  Google Scholar 

  15. Liu J, Do-Quang M, Amberg G (2015) AIChE J 61:317–332

    Article  Google Scholar 

  16. Yamamoto S, Furusawa T (2015) J Supercrit Fluids 97:192–201

    Article  Google Scholar 

  17. Kwak TY, Mansoori GA (1986) Chem Eng Sci 41:1303–1309

    Article  Google Scholar 

  18. Platzer B, Maurer G (1993) Fluid Phase Equilib 84:79–110

    Article  Google Scholar 

  19. Hansen AG (1967) Fluid mechanics. Wiley, New York

    Google Scholar 

  20. Sandler S (1989) Chemical and engineering thermodynamics. Wiley, New York

    Google Scholar 

  21. Prausnitz JM, Lichtenthaler RN, de Azevedo EG (1998) Molecular thermodynamics of fluid-phase equilibria. Pearson Education

  22. Reverchon E, Donsì G (1993) J Supercrit Fluids 6:241–248

    Article  Google Scholar 

  23. Huang Zh, Sun G-B, Chiew YC, Kawi S (2005) Powder Technol 160:127–134

    Article  Google Scholar 

  24. Sane A, Thies MC (2005) J Phys Chem B 109:19688–19695

    Article  Google Scholar 

  25. Kayrak D, Akman U, Hortaçsu Ö (2003) J Supercrit Fluids 26:17–31

    Article  Google Scholar 

  26. Danesh A (1998) PVT and phase behaviour of petroleum reservoir fluids, vol 47. Elsevier

  27. Bagheri H, Ghader S, Hatami N (2019) Chem Chem Technol 13:1–10

    Article  Google Scholar 

  28. Litster JD, Smit DJ, Hounslow MJ (1995) AIChE J 41:591–603

    Article  Google Scholar 

  29. Lee KW, Chen H, Gieseke JA (1984) Aerosol Sci Technol 3:53–62

    Article  Google Scholar 

  30. Pratsinis SE (1988) J Colloid Interface Sci 124:416–427

    Article  Google Scholar 

  31. Diemer RB, Ehrman ShH (2005) Powder Technol 156:129–145

    Article  Google Scholar 

  32. Randolph Alan D, Larson MA (1988) Theory of particulate processes-analysis and techniques of continuous crystallization. Academic Press

  33. Salvatori F, Muhr H, Plasari E (2005) Powder Technol 157:27–32

    Article  Google Scholar 

  34. Gruy F (2011) Colloid Surface A 374:69–76

    Article  Google Scholar 

  35. Sane A, Taylor Sh, Sun Y-P, Thies MC (2004) J Supercrit Fluids 28:277–285

    Article  Google Scholar 

  36. Chimowitz EH, Kelley FD, Munoz FM (1988) Fluid Phase Equilib 44:23–52

    Article  Google Scholar 

  37. Weber M, Russell LM, Debenedetti PG (2002) J Supercrit Fluids 23:65–80

    Article  Google Scholar 

  38. Helfgen B, Türk M, Schaber K (2000) Powder Technol 110:22–28

    Article  Google Scholar 

  39. Reverchon E, Pallado P (1996) J Supercrit Fluids 9:216–221

    Article  Google Scholar 

  40. Hirunsit P, Huang Z, Srinophakun T, Charoenchaitrakool M, Kawi S (2005) Powder Technol 154:83–94

    Article  Google Scholar 

  41. Masoodiyeh F, Mozdianfard MR, Karimi-Sabet J (2017) Powder Technol 317:264–274

    Article  Google Scholar 

  42. Flint LR, Howarths WJ (1971) Chem Eng Sci 26:1155–1168

    Article  Google Scholar 

  43. Park SH, Lee KW, Otto E, Fissan H (1999) J Aerosol Sci 30:3–16

    Article  Google Scholar 

  44. Sajo E (2008) Aerosol Sci Technol 42:134–139

    Article  Google Scholar 

  45. Veerapaneni S, Wiesner MR (1996) J Colloid Interface Sci 177:45–57

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to professor G. A. Mansoori of the University of Illinois at Chicago to suggest useful comments and reviewing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Bagheri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Soave wrote SRK EoS in the following form [26]:

$$ P = \frac{RT}{v - b} - \frac{{a_{c} \alpha }}{{v\left( {v + b} \right)}} $$
(36)
$$ a_{c} = 0.42747\frac{{\left( {RT_{c} } \right)^{2} }}{{P_{c} }} $$
(37)
$$ b = 0.08664\frac{{RT_{c} }}{{P_{c} }} $$
(38)
$$ \alpha = \left[ {1 + m\left( {1 - \sqrt {\frac{T}{{T_{c} }}} } \right)} \right]^{2} $$
(39)
$$ m = 0.48 + 1.574\omega - 0.176\omega^{2} $$
(40)

where \( P_{c} \), \( T_{c} \) and \( \omega \) are critical pressure, temperature and acentric factor, respectively. Also, Eq. (36) in terms of compressibility factor would be [26]:

$$ Z^{3} - Z^{2} + \left( {A - B - B^{2} } \right)Z - AB = 0 $$
(41)
$$ A = \frac{aP}{{\left( {RT} \right)^{2} }} $$
(42)
$$ B = \frac{bP}{RT} $$
(43)

Equations of state are applied to multicomponent systems by using mixing rules to determine their parameters for mixtures. In this study, vdW mixing rule is used for a and b parameters [27]:

$$ a = \mathop \sum \limits_{i} \mathop \sum \limits_{j} y_{i} y_{j} \sqrt {a_{i} a_{j} } \left( {1 - k_{ij} } \right) $$
(44)
$$ b = \mathop \sum \limits_{i} y_{i} b_{i} $$
(45)

where kij is binary interaction parameters. The fugacity coefficient of a solute in a SCF is derived [26]:

$$ \ln \hat{\varphi }_{i} = \frac{{b_{i} }}{b}\left( {Z - 1} \right) - \ln \left( {Z - B} \right) + \frac{A}{B}\left( {\frac{{2\mathop \sum \nolimits_{j} y_{j} \sqrt {a_{i} a_{j} } \left( {1 - k_{ij} } \right)}}{a} - \frac{{b_{i} }}{b}} \right)\ln \left( {\frac{Z}{Z + B}} \right) $$
(46)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagheri, H., Hashemipour, H. & Ghader, S. Population balance modeling: application in nanoparticle formation through rapid expansion of supercritical solution. Comp. Part. Mech. 6, 721–737 (2019). https://doi.org/10.1007/s40571-019-00257-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-019-00257-w

Keywords

Navigation