Skip to main content
Log in

A MUSCL-SCNI approach for meshfree modeling of shock waves in fluids

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A stable and nodally integrated meshfree formulation for modeling shock waves in fluids is developed. The reproducing kernel approximation is employed to discretize the conservation equations for compressible flow, and a flux vector splitting approach is applied to allow proper numerical treatments for the advection and pressure parts, respectively, based on the characteristics of each flux term. To capture the essential shock physics in fluids, including the Rankine–Hugoniot jump conditions and the entropy condition, local Riemann enrichment is introduced under the stabilized conforming nodal integration (SCNI) framework. Meanwhile, numerical instabilities associated with the advection flux are eliminated by adopting a modified upwind scheme. To further enhance accuracy, a MUSCL-type method is introduced in conjunction with an oscillation limiter to avoid Gibbs phenomenon and ensure monotonic piecewise linear reconstruction in the smooth region. The present meshfree formulation is free from tunable artificial parameters and is capable of capturing shock and rarefaction waves without over/undershoots. Several numerical examples are analyzed to demonstrate the effectiveness of the proposed MUSCL-SCNI approach in meshfree modeling of complex shock phenomena, including shock diffraction, shock–vortex interaction, and high energy explosion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    MathSciNet  MATH  Google Scholar 

  2. Liu WK, Jun S, Sihling DT, Chen Y, Hao W (1997) Multiresolution reproducing kernel particle method for computational fluid dynamics. Int J Numer Methods Fluids 24(12):1391–1415

    MathSciNet  MATH  Google Scholar 

  3. Chen J-S, Hillman M, Chi S-W (2017) Meshfree methods: progress made after 20 years. J Eng Mech 143(4):04017001

    Google Scholar 

  4. von Neumann J, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21(3):232–237

    MathSciNet  MATH  Google Scholar 

  5. Wilkins ML (1980) Use of artificial viscosity in multidimensional fluid dynamic calculations. J Comput Phys 36(3):281–303

    MathSciNet  MATH  Google Scholar 

  6. Monaghan J, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52(5):374–389

    MATH  Google Scholar 

  7. Monaghan J (1997) SPH and Riemann solvers. J Comput Phys 136(2):298–307

    MathSciNet  MATH  Google Scholar 

  8. Godunov SK (1959) A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik 89(3):271–306

    MathSciNet  MATH  Google Scholar 

  9. Inutsuka S-I (2002) Reformulation of smoothed particle hydrodynamics with Riemann solver. arXiv preprint astro-ph/0206401

    MATH  Google Scholar 

  10. Hietel D, Steiner K, Struckmeier J (2000) A finite-volume particle method for compressible flows. Math Models Methods Appl Sci 10(09):1363–1382

    MathSciNet  MATH  Google Scholar 

  11. Lohner R, Sacco C, Onate E, Idelsohn S (2002) A finite point method for compressible flow. Int J Numer Meth Eng 53(8):1765–1779

    MATH  Google Scholar 

  12. Rusanov VV (1961) The calculation of the interaction of non-stationary shock waves with barriers. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 1(2):267–279

    MathSciNet  Google Scholar 

  13. Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43(2):357–372

    MathSciNet  MATH  Google Scholar 

  14. Harten A, Lax PD, van Leer B (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25(1):35–61

    MathSciNet  MATH  Google Scholar 

  15. Dukowicz JK (1985) A general, non-iterative Riemann solver for Godunov’s method. J Comput Phys 61(1):119–137

    MathSciNet  MATH  Google Scholar 

  16. Roth MJ, Chen J-S, Slawson TR, Danielson KT (2016) Stable and flux-conserved meshfree formulation to model shocks. Comput Mech 57(5):773–792

    MathSciNet  MATH  Google Scholar 

  17. Roth MJ, Chen J-S, Danielson KT, Slawson TR (2016) Hydrodynamic meshfree method for high-rate solid dynamics using a Rankine–Hugoniot enhancement in a Riemann-SCNI framework. Int J Numer Meth Eng 108(12):1525–1549

    MathSciNet  Google Scholar 

  18. Chen J-S, Wu C-T, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Meth Eng 50(2):435–466

    MATH  Google Scholar 

  19. van Leer B (1977) Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J Comput Phys 23(3):276–299

    MATH  Google Scholar 

  20. van Leer B (1979) Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J Comput Phys 21(1):101–136

    MATH  Google Scholar 

  21. van Leer B (1974) Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J Comput Phys 14(4):361–370

    MATH  Google Scholar 

  22. van Albada G, van Leer B, Roberts W (1997) A comparative study of computational methods in cosmic gas dynamics. In: Upwind and high-resolution schemes, Berlin, Heidelberg, Springer, 1997, pp 95–103

  23. Harten A, Osher S (1987) Uniformly high-order accurate nonoscillatory schemes. I. SIAM J Numer Anal 24(2):279–309

    MathSciNet  MATH  Google Scholar 

  24. Harten A, Engquist B, Osher S, Chakravarthy SR (1987) Uniformly high order accurate essentially non-oscillatory schemes, III. J Comput Phys 71(2):231–303

    MathSciNet  MATH  Google Scholar 

  25. Shu C-W, Osher S (1988) Efficient implementation of essentially non-oscillatory shock-capturing schemes. J Comput Phys 77(2):439–471

    MathSciNet  MATH  Google Scholar 

  26. Avesani D, Dumbser M, Bellin A (2014) A new class of moving-least-squares WENO-SPH schemes. J Comput Phys 270:278–299

    MathSciNet  MATH  Google Scholar 

  27. Sun C-T, Guan P-C, Jiang J, Kwok O-LA (2018) The weighted reconstruction of reproducing kernel particle method for one-dimensional shock wave problems. Ocean Eng 149:325–340

    Google Scholar 

  28. Sun C-T, Kwok O-LA, Guan P-C, Shih W-K (2018) Using reproducing kernel particle method for shallow water problems. J Mar Sci Technol 26(3):431–440

    Google Scholar 

  29. Vila J (1999) On particle weighted methods and smooth particle hydrodynamics. Hyperbolic Problems Theory Numer Appl 9(2):161–209

    MathSciNet  MATH  Google Scholar 

  30. Ortega E, Onate E, Idelsohn S (2009) A finite point method for adaptive three-dimensional compressible flow calculations. Int J Numer Methods Fluids 60(9):937–971

    MathSciNet  MATH  Google Scholar 

  31. Jiang G-S, Shu C-W (1996) Efficient implementation of weighted ENO schemes. J Comput Phys 126(1):202–228

    MathSciNet  MATH  Google Scholar 

  32. Pandolfi M, D’Ambrosio D (2001) Numerical instabilities in upwind methods: analysis and cures for the “carbuncle” phenomenon. J Comput Phys 166(2):271–301

    MathSciNet  MATH  Google Scholar 

  33. Quirk JJ (1997) A contribution to the great Riemann solver debate, in upwind and high-resolution schemes. Springer, Dordrecht, pp 550–569

    Google Scholar 

  34. Steger JL, Warming R (1981) Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods. J Comput Phys 40(3):263–293

    MathSciNet  MATH  Google Scholar 

  35. Liou M-S, Steffen CJ Jr (1993) A new flux splitting scheme. J Comput Phys 107(1):23–39

    MathSciNet  MATH  Google Scholar 

  36. Zha G-C, Bilgen E (1993) Numerical solutions of Euler equations by using a new flux vector splitting scheme. Int J Numer Methods Fluids 17(2):115–144

    MathSciNet  MATH  Google Scholar 

  37. Toro EF, Vazquez-Cendon M (2012) Flux splitting schemes for the Euler equations. Comput Fluids 70:1–12

    MathSciNet  MATH  Google Scholar 

  38. Lax PD (1973) Hyperbolic systems of conservation laws and the mathematical theory of shock waves. SIAM, New York

    MATH  Google Scholar 

  39. Anderson JD, Wendt J (1995) Computational fluid dynamics. Springer, Berlin

    Google Scholar 

  40. Chen J-S, Pan C, Wu C-T, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(14):195–227

    MathSciNet  MATH  Google Scholar 

  41. Davison L (2008) Fundamentals of shock wave propagation in solids. Springer, Berlin

    MATH  Google Scholar 

  42. LeVeque RJ (1990) Conservative methods for nonlinear problems, in numerical methods for conservation laws. Springer, Berlin, pp 122–135

    Google Scholar 

  43. Mandal J, Panwar V (2012) Robust HLL-type Riemann solver capable of resolving contact discontinuity. Comput Fluids 63:148–164

    MathSciNet  MATH  Google Scholar 

  44. Davis S (1988) Simplified second-order Godunov-type methods. SIAM J Sci Stat Comput 9(3):445–473

    MathSciNet  MATH  Google Scholar 

  45. Wei H, Chen J-S, Hillman M (2016) A stabilized nodally integrated meshfree formulation for fully coupled hydro-mechanical analysis of fluid-saturated porous media. Comput Fluids 141:105–115

    MathSciNet  MATH  Google Scholar 

  46. Wei H, Chen J-S (2018) A damage particle method for smeared modeling of brittle fracture. Int J Multiscale Comput Eng 16(4):303–324

    Google Scholar 

  47. Barth TJ, Jespersen DC (1989) The design and application of upwind schemes on unstructured meshes. NASA Ames Research Center, Moffett Field

  48. Gottlieb S, Shu C-W (1998) Total variation diminishing Runge-Kutta schemes. Math Comput Am Math Soc 67(221):73–85

    MathSciNet  MATH  Google Scholar 

  49. Schardin H (1957) High frequency cinematography in the shock tube. J Photogr Sci 5(2):17–19

    Google Scholar 

  50. Chang S-M, Chang K-S (2000) On the shock-vortex interaction in Schardin’s problem. Shock Waves 10(5):333–343

    MATH  Google Scholar 

  51. Lee E, Finger M, Collins W (1973) JWL equation of state coefficients for high explosives. Lawrence Livermore National Laboratory (LLNL), Livermore

    Google Scholar 

  52. Chapman DL (1899) VI. On the rate of explosion in gases. Lond Edinb Dublin Philos Mag J Sci 47(284):90–104

    MATH  Google Scholar 

  53. Jouguet E (1905) Sur la propagation des reactions chimiques dans les gaz. J Maths Pure Appl 7:347

    MATH  Google Scholar 

  54. Dobratz B, Crawford P (1985) LLNL explosives handbook: properties of chemical explosives and explosive simulants. Lawrence Livermore National Laboratory, Livermore

    Google Scholar 

  55. Beltman W, Shepherd J (2002) Linear elastic response of tubes to internal detonation loading. J Sound Vib 252(4):617–655

    Google Scholar 

  56. Mader CL (2007) Numerical modeling of explosives and propellants. CRC Press, Boca Raton

    Google Scholar 

  57. You Y, Chen J-S, Lu H (2003) Filters, reproducing kernel, and adaptive meshfree method. Comput Mech 31(3–4):316–326

    MATH  Google Scholar 

Download references

Acknowledgements

The support from US Army Engineer Research and Development Center under the contract PLA-0009 and the support from Sandia National Laboratories under the contract 1655264 to the University of California, San Diego, are greatly appreciated. Permission to publish was granted by Director, Geotechnical and Structures Laboratory of the US Army Engineer Research and Development Center. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the US Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiun-Shyan Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, TH., Chen, JS., Wei, H. et al. A MUSCL-SCNI approach for meshfree modeling of shock waves in fluids. Comp. Part. Mech. 7, 329–350 (2020). https://doi.org/10.1007/s40571-019-00248-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-019-00248-x

Keywords

Navigation