Skip to main content
Log in

An explicit/implicit Runge–Kutta-based PFEM model for the simulation of thermally coupled incompressible flows

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A semi-explicit Lagrangian scheme for the simulation of thermally coupled incompressible flow problems is presented. The model relies on combining an explicit multi-step solver for the momentum equation with an implicit heat equation solver. Computational cost of the model is reduced via application of an efficient strategy adopted for the solution of momentum/continuity system by the authors in their previous work. The applicability of the method to solving thermo-mechanical problems is studied via various numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. ANSYS-Polyflow (2019) http://www.ansys.com/products/fluids/ansys-polyflow

  2. Arpaci V, Larsen P (1984) Convection heat transfer. Prentice Hall, New York

    Google Scholar 

  3. Aubry R, Idelsohn S, Oñate E (2005) Particle finite element method in fluid-mechanics including thermal convection–diffusion. Comput Struct 83(17):1459–1475 Advances in Meshfree Methods

    Article  Google Scholar 

  4. Chorin A (1967) A numerical method for solving incompressible viscous problems. J Comput Phys 2:12–26

    Article  MathSciNet  MATH  Google Scholar 

  5. Codina R (2001) A stabilized finite element method for generalized stationary incompressible flows. Comput Methods Appl Mech Eng 190(20–21):2681–2706

    Article  MathSciNet  MATH  Google Scholar 

  6. Corzo S, Mrquez S, Ramajo D, Nigro N (2011) Numerical simulation of natural convection phenomena. ENIEF, Rosario, Argentina

    Google Scholar 

  7. Dadvand P, Rossi R, Oñate E (2010) An object-oriented environment for developing finite element codes for multi-disciplinary applications. Arch Comput Methods Eng 17(3):253–297

    Article  MATH  Google Scholar 

  8. Davis G (1983) Natural convection of air in a square cavity: a benchmark numerical solution. Int J Numer Methods Fluids 3:249–264

    Article  MATH  Google Scholar 

  9. Dixit H, Babu V (2006) Simulation of high Rayleigh number natural convection in a square cavity using the lattice Boltzmann method. Int J Heat Mass Transf 49(3):727–739

    Article  MATH  Google Scholar 

  10. Engineering-toolbox (2019) http://www.engineeringtoolbox.com/water-dynamic-kinematic-viscosity-d-596.html

  11. Franci A (2016) Unified lagrangian formulation for fluid and solid mechanics, fluid-structure interaction and coupled thermal problems using the PFEM. Springer, Cham (isbn 978-3319833415)

    MATH  Google Scholar 

  12. Friki A (1993) Simulation numerique 3D, en collocation Chebyshev, de phenomenes thermoconvectifs en centrifugation. These de l‘Universite Paris-Sud XI-Orsay

  13. Hyre M (2002) Numerical simulation of glass forming and conditioning. J Am Ceram Soc 85(5):1047–1056

    Article  Google Scholar 

  14. Idelsohn S, Marti J, Becker P, Oñate E (2014) Analysis of multifluid flows with large time steps using the particle finite element method. Int J Numer Methods Fluids 75(9):621–644

    Article  MathSciNet  Google Scholar 

  15. Idelsohn S, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids. Application to fluid-structure interaction problems via the PFEM. Comput Methods Appl Mech Eng 197:1762–1776

    Article  MathSciNet  MATH  Google Scholar 

  16. Idelsohn S, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198(33–36):2750–2767

    Article  MATH  Google Scholar 

  17. Idelsohn S, Mier-Torrecilla MD, Marti J, Oñate E (2011) The particle finite element method for multi-fluid flows. In: Oñate E, Owen R (eds) Particle-based methods. Springer, Dordrecht, pp 135–158

    Chapter  Google Scholar 

  18. Idelsohn S, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61:964–989

    Article  MathSciNet  MATH  Google Scholar 

  19. Janssen R, Henkes R, Hoogendoorn C (1993) Transition to time-periodicity of a natural-convection flow in 3D differentially heated cavity. Int J Heat Mass Transf 36:2927–2940

    Article  Google Scholar 

  20. Marti J (2018) Exploration of kratos thermo-fluid capabilities for conjugate heat transfer problems. Technical report, CIMNE

  21. Marti J, Idelsohn S, Oñate E (2018) A finite element model for the simulation of the ul-94 burning test. Fire Technol 54(6):1783–1805

    Article  Google Scholar 

  22. Marti J, Ryzhakov P (2019) An explicit-implicit finite element model for the numerical solution of incompressible Navier–Stokes equations on moving grids. Comput Methods Appl Mech Eng (submitted)

  23. Marti J, Ryzhakov P, Idelsohn S, Oñate E (2010) Combined Eulerian-PFEM approach for analysis of polymers in fire situations. Int J Numer Methods Eng 92:782–801

    Article  MathSciNet  MATH  Google Scholar 

  24. Mier Torrecilla M (2010) Numerical simulation of multi-fluid flows with the particle finite element method. Ph.D. Thesis, Universitat Politècnica de Catalunya

  25. Muttin F, Coupez T, Bellet M, Chenot J (1993) Lagrangian finite-element analysis of time-dependent viscous free-surface flow using an automatic remeshing technique: application to metal casting flow. Int J Numer Methods Eng 36(12):2001–2015

    Article  MATH  Google Scholar 

  26. Nikulin D (1982) Applicability of the Boussinesq approximation for the solution of problems of unsteady natural concentration convection. Fluid Dyn 17(5):779–781

    Article  MATH  Google Scholar 

  27. Oñate E, Idelsohn S, Del Pin F, Aubry R (2004) The particle finite element method: an overview. Int J Comput Methods 1:267–307

    Article  MATH  Google Scholar 

  28. Oñate E, Marti J, Ryzhakov P, Rossi R, Idelsohn S (2013) Analysis of the melting, burning and flame spread of polymers with the particle finite element method. Comput Assist Methods Eng Sci 20:165–184

    MathSciNet  Google Scholar 

  29. Oñate E, Rojek J, Chiumenti M, Idelsohn S, Del Pin F, Aubry R (2006) Advances in stabilized finite element and particle methods for bulk forming processes. Comput Methods Appl Mech Eng 195(48–49):6750–6777

    Article  MathSciNet  MATH  Google Scholar 

  30. Radovitzky R, Ortiz M (1998) Lagrangian finite element analysis of Newtonian fluid flows. Int J Numer Methods Eng 43(4):607–619

    Article  MathSciNet  MATH  Google Scholar 

  31. Ramsak M (2015) Conjugate heat transfer of backward-facing step flow: a benchmark problem revisited. Int J Heat Mass Transf 84:791–799

    Article  Google Scholar 

  32. Ramaswamy B, Kawahara M (1987) Lagrangian finite element analysis applied to viscous free surface fluid flow. Int J Numer Methods Fluids 7(9):953–984

    Article  MATH  Google Scholar 

  33. Ramaswamy B, Kawahara M, Nakayama T (1986) Lagrangian finite element method for the analysis of two-dimensional sloshing problems. Int J Numer Methods Fluids 6(9):659–670

    Article  MATH  Google Scholar 

  34. Ryzhakov P (2017) A modified fractional step method for fluid-structure interaction problems. Rev Int de Métod Numér para Cálc y Diseño en Ing 33(1–2):58–64

    Article  MathSciNet  Google Scholar 

  35. Ryzhakov P, Garcia J, Oñate E (2016) Lagrangian finite element model for the 3D simulation of glass forming processes. Comput Struct 177:126–140

    Article  Google Scholar 

  36. Ryzhakov P, Marti J (2018) A semi-explicit multi-step method for solving incompressible Navier–Stokes equations. Appl Sci 8(1):119

    Article  Google Scholar 

  37. Ryzhakov P, Marti J, Idelsohn S, Oñate E (2017) Fast fluid-structure interaction simulations using a displacement-based finite element model equipped with an explicit streamline integration prediction. Comput Methods Appl Mech Eng 315:1080–1097

    Article  MathSciNet  Google Scholar 

  38. Ryzhakov P, Oñate E (2017) A finite element model for fluid-structure interaction problems involving closed membranes, internal and external fluids. Comput Methods Appl Mech Eng 326:422–445

    Article  MathSciNet  Google Scholar 

  39. Ryzhakov P, Rossi R, Oñate E (2012) An algorithm for the simulation of thermally coupled low speed flow problems. Int J Numer Methods Fluids 70(1):1–19

    Article  MathSciNet  MATH  Google Scholar 

  40. Ryzhakov PB (2017) An axisymmetric PFEM formulation for bottle forming simulation. Comput Part Mech 4(1):3–12

    Article  MathSciNet  Google Scholar 

  41. Sklar D, Gimenez J, Nigro N, Idelsohn S (2012) Thermal coupling in particle finite element method-second generation. Mec Comput 31:4143–4152

    Google Scholar 

  42. Zhu M, Scott MH (2017) Unified fractional step method for Lagrangian analysis of quasi-incompressible fluid and nonlinear structure interaction using the PFEM. Int J Numer Methods Eng 109(9):1219–1236

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Marti.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marti, J., Ryzhakov, P. An explicit/implicit Runge–Kutta-based PFEM model for the simulation of thermally coupled incompressible flows. Comp. Part. Mech. 7, 57–69 (2020). https://doi.org/10.1007/s40571-019-00229-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-019-00229-0

Keywords

Navigation