Skip to main content

The Particle Finite Element Method for Multi-Fluid Flows

  • Chapter
  • First Online:
Particle-Based Methods

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 25))

Abstract

This paper presents the Particle Finite Element Method (PFEM) and its application to multi-fluid flows. Key features of the method are the use of a Lagrangian description to model the motion of the fluid particles (nodes) and that all the information is associated to the particles. A mesh connects the nodes defining the discretized domain where the governing equations, expressed in an integral form, are solved as in the standard FEM.We have extended the method to problems involving several different fluids with the aim of exploiting the fact that Lagrangian methods are specially well suited for tracking any kind of interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batchelor, G., An Introduction to Fluid Dynamics. Cambridge University Press, 1967.

    Google ScholarĀ 

  2. Caboussat, A., Numerical simulation of two-phase free surface flows. Archives of Computational Methods in Engineering 12:165ā€“224, 2005.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  3. Carbonell, J., Modeling of ground excavation with the Particle Finite Element Method. Ph.D. Thesis, Universitat PolitĆØcnica de Catalunya, Barcelona (Spain), 2009.

    Google ScholarĀ 

  4. Del Pin, F., Idelsohn, S., OƱate, E., Aubry, R., The ALE/Lagrangian Particle Finite Element Method: A new approach to computation of free-surfaces flows and fluid-object interactions. Computers and Fluids 36(1):27ā€“38, 2007.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  5. Drysdale, D., An Introduction to Fire Dynamics. Wiley Interscience, 1985.

    Google ScholarĀ 

  6. Edelsbrunner, H., MĆ¼cke, E., Three-dimensional alpha shapes. ACM Transactions on Graphics 13:43ā€“72, 1994.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  7. Fernandez-Pello, A., Flame spread modeling. Combustion Science and Technology 39:119ā€“134, 1984.

    ArticleĀ  Google ScholarĀ 

  8. Gonzalez-Ferrari, C., El MƩtodo de los Elementos Finitos de Partƭculas: Aplicaciones a la pulvimetalurgia industrial. Ph.D. thesis, Universitat PolitƩcnica de Catalunya, 2009.

    Google ScholarĀ 

  9. Harlow, F., The Particle-in-Cell computing method for fluid dynamics. Methods in Computational Physics 3:313ā€“343, 1964.

    Google ScholarĀ 

  10. Hirt, C., Cook, J., Butler, T., A Lagrangian method for calculating the dynamics of an incompressible fluid with free surface. Journal of Computational Physics 5:103ā€“124, 1970.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  11. Hirt, C., Nichols, B., Volume of Fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39:201ā€“225, 1981.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  12. Hughes, T., Liu, W., Zimmermann, T., Lagrangian-Eulerian finite element element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering 29:239ā€“349, 1981.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  13. Idelsohn, S., Calvo, N., OƱate, E., Polyhedrization of an arbitrary 3D point set. Computer Methods in Applied Mechanics and Engineering 192:2649ā€“2667, 2003.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  14. Idelsohn, S., Del Pin, F., Rossi, R., OƱate, E., Fluid-structure interaction problems with strong added-mass effect. International Journal for Numerical Methods in Engineering 80:1261ā€“1294, 2009.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  15. Idelsohn, S., Marti, J., Limache, A., OƱate, E., Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid-structure interaction problems via the PFEM. Computer Methods in Applied Mechanics and Engineering 197:1762ā€“1776, 2008.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  16. Idelsohn, S., Marti, J., Souto-Iglesias, A., OƱate, E., Interaction between an elastic structure and free-surface flows: Experimental versus numerical comparisons using the PFEM. Computational Mechanics 43:125ā€“132, 2008.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  17. Idelsohn, S.,Mier-Torrecilla, M., Nigro, N., OƱate, E., On the analysis of heterogeneous fluids with jumps in the viscosity using a discontinuous pressure field. Computational Mechanics, 2009 (in press).

    Google ScholarĀ 

  18. Idelsohn, S., Mier-Torrecilla, M., OƱate, E., Multi-fluid flows with the Particle Finite Element Method. Computer Methods in Applied Mechanics and Engineering 198:2750ā€“2767, 2009.

    ArticleĀ  Google ScholarĀ 

  19. Idelsohn, S., OƱate, E., Del Pin, F., A Lagrangian meshless finite element method applied to fluid-structure interaction problems. Computers and Structures 81(8ā€“11), 655ā€“671, 2003.

    ArticleĀ  Google ScholarĀ 

  20. Idelsohn, S., OƱate, E., Del Pin, F., The Particle Finite Element Method: A powerful tool to solve incompressible flows with free-surfaces and breaking waves. International Journal for Numerical Methods in Engineering 61(7):964ā€“989, 2004.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  21. Idelsohn, S., OƱate, E., Del Pin, F., Calvo, N., Fluid-structure interaction using the Particle Finite Element Method. Computer Methods in Applied Mechanics and Engineering 195(17ā€“18):2100ā€“2123, 2006.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  22. Idelsohn, S., Storti, M., OƱate, E., Lagrangian formulations to solve free surface incompressible inviscid fluid flows. Computer Methods in Applied Mechanics and Engineering 191(6ā€“7):583ā€“593, 2001.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  23. Larese, A., Rossi, R., OƱate, E., Idelsohn, S., Validation of the Particle Finite ElementMethod (PFEM) for simulation of free surface flows. Engineering Computations 25:385ā€“425, 2008.

    ArticleĀ  Google ScholarĀ 

  24. Mier-Torrecilla,M., Numerical simulation ofmulti-fluid flows with the Particle Finite Element Method. Ph.D. Thesis, Technical University of Catalonia, 2010.

    Google ScholarĀ 

  25. Mier-Torrecilla, M., Geyer, A., Phillips, J., Idelsohn, S., OƱate, E., Numerical simulations of negatively buoyant jets in an immiscible fluid using the Particle Finite Element Method. Journal of Fluid Mechanics, 2010 (submitted).

    Google ScholarĀ 

  26. Mier-Torrecilla, M., Idelsohn, S., OƱate, E., A pressure segregation method for the Lagrangian simulation of interfacial flows. International Journal for Numerical Methods in Fluids, 2010 (submitted).

    Google ScholarĀ 

  27. Oliver, J., Cante, J.,Weyler, R., GonzĆ”lez, C., HernĆ”ndez, J., Particle finite element methods in solid mechanics problems. In: Computational Plasticity, Vol. 1, pp. 87ā€“103, Springer Verlag, 2007.

    Google ScholarĀ 

  28. OƱate, E., Idelsohn, S., Celigueta, M., Rossi, R., Advances in the Particle Finite Element Method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Computer Methods in Applied Mechanics and Engineering 197:1777ā€“1800, 2008.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  29. OƱate, E., Idelsohn, S., Del Pin, F., Aubry, R., The Particle Finite Element Method: An overview. International Journal of Computational Methods 1(2):267ā€“307, 2004.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  30. OƱate, E., Rossi, R., Idelsohn, S., Butler, K., Melting and spread of polymers in fire with the Particle Finite Element Method. International Journal for Numerical Methods in Engineering 81:1046ā€“1072, 2009.

    Google ScholarĀ 

  31. Osher, S., Sethian, J., Fronts propagating with curvature dependant speed: algorithms based on Hamiltonā€“Jacobi formulations. Journal of Computational Physics 79:12ā€“49, 1988.

    ArticleĀ  MATHĀ  MathSciNetĀ  Google ScholarĀ 

  32. Poinsot, T., Veynante, D., Theorical and Numerical Combustion. Edwards, 2001.

    Google ScholarĀ 

  33. Ramaswamy, B., Kawahara, M., Arbitrary Lagrangian-Eulerian finite element method for the analysis of free surface fluid flows. Computational Mechanics 1:103ā€“108, 1986.

    Google ScholarĀ 

  34. Ramaswamy, B., Kawahara, M., Lagrangian finite element analysis applied to viscous free surface fluid flow. International Journal for Numerical Methods in Fluids 7:953ā€“984, 1987.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  35. Rossi, R., Ryzhakov, P., OƱate, E., A monolithic FE formulation for the analysis of membranes in fluids. International Journal of Space Structures 24:205ā€“210, 2009.

    ArticleĀ  Google ScholarĀ 

  36. Scardovelli, R., Zaleski, S., Direct Numerical Simulation of free-surface and interfacial flow. Annual Reviews of Fluid Mechanics 31:567ā€“603, 1999.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  37. Shyy, W., Computational Fluid Dynamics with Moving Boundaries. Taylor & Francis, 1996.

    Google ScholarĀ 

  38. Tezduyar, T., Behr, M., Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure: I. The concept and preliminary numerical tests. Computer Methods in Applied Mechanics and Engineering 94:339ā€“351, 1992.

    MATHĀ  MathSciNetĀ  Google ScholarĀ 

  39. Tezduyar, T., Behr, M., Mittal, S., Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces. The deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows and flows with drifting cylinders. Computer Methods in Applied Mechanics and Engineering 94:353ā€“371, 1992.

    Google ScholarĀ 

  40. Unverdi, S., Tryggvason, G., Computations of multi-fluid flows. Physica D: Nonlinear Phenomena 60:70ā€“83, 1992.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  41. Unverdi, S., Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics 100:25ā€“37, 1992.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  42. Xie, W., DesJardin, P., An embedded upward flame spread model using 2D direct numerical simulations. Combustion and Flame 156:522ā€“530, 2009.

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Idelsohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Idelsohn, S.R., Mier-Torrecilla, M., Marti, J., OƱate, E. (2011). The Particle Finite Element Method for Multi-Fluid Flows. In: OƱate, E., Owen, R. (eds) Particle-Based Methods. Computational Methods in Applied Sciences, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0735-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0735-1_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0734-4

  • Online ISBN: 978-94-007-0735-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics