Skip to main content
Log in

Numerical simulation of droplet sliding on an inclined surface using moving particle semi-implicit method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Two novel boundary models for the moving particle semi-implicit method are proposed in this paper. These models precisely reproduce the dynamic behavior of a droplet on an inclined surface using a polygon wall model. The existing polygon wall model assumes that the surface is smooth and therefore cannot reproduce the dynamic contact angle correctly. In addition, droplet retention on a surface inclined at a low angle has not been reproduced in the literature. The proposed models take into account forces acting on droplets from surface features of the wall. These models are developed to reproduce the dynamic and static contact angle hysteresis in droplet sliding behavior that have been observed in experiments. Two-dimensional calculations of a droplet sliding down an inclined surface are performed. The proposed models are evaluated by comparing numerical results with experimental observations of droplets sliding on an inclined surface. This comparison confirms that the dynamic contact angle and sliding velocity can be simulated precisely. In addition, we found that our numerical results agree well with the Cox–Voinov law, which is used widely to evaluate dynamic contact angles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Hirt C, Nichols BD (1981) Volume of fluid method for the dynamics of free boundaries. J Comput Phys 39(1):201–225

    Article  Google Scholar 

  2. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434

    Article  Google Scholar 

  3. Lucy LB (1977) Numerical approach to testing the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  4. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics—theory and application to non-spherical stars. Mon Not R Astron Soc 181(2):375–389

    Article  Google Scholar 

  5. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354

    Article  MathSciNet  Google Scholar 

  6. Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Eng 33:333–353

    Article  Google Scholar 

  7. Hu XY, Adams NA (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213(2):844–861

    Article  MathSciNet  Google Scholar 

  8. Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227(1):264–278

    Article  Google Scholar 

  9. Hu XY, Adams NA (2009) A constant-density approach for incompressible multi-phase SPH. J Comput Phys 228:2082–2091

    Article  Google Scholar 

  10. Breinlinger T, Polfer P, Hashibon A, Kraft T (2013) Surface tension and wetting effects with smoothed particle hydro- dynamics. J Comput Phys 243:14–27

    Article  Google Scholar 

  11. Nomura K, Koshizuka S, Oka Y (2001) Numerical analysis of droplet breakup behavior using particle method. J Nucl Sci Technol 38(12):1057–1064

    Article  Google Scholar 

  12. Duan RQ, Koshizuka S, Oka Y (2003) Two-dimensional simulation of drop deformation and breakup at around the critical Weber number. Nucl Eng Des 225:37–48

    Article  Google Scholar 

  13. Duan G, Koshizuka S, Chen B (2015) A contoured continuum surface force model for particle methods. J Comput Phys 298:280–304

    Article  MathSciNet  Google Scholar 

  14. Tartakovsky A, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72:026301-1–026301-9

    Article  Google Scholar 

  15. Tartakovsky AM, Panchenko A (2016) Pairwise force smoothed particle hydrodynamics model for multiphase flow: surface tension and contact line dynamics. J Comput Phys 305:1119–1146

    Article  MathSciNet  Google Scholar 

  16. Shirakawa N, Horie H, Yamamoto Y, Tsunoyama S (2001) Analysis of the void distribution in a circular tube with the two-fluid particle interaction method. J Nucl Sci Technol 38:392–402

    Article  Google Scholar 

  17. Kondo M, Koshizuka S, Takimoto M (2007) Surface tension model using inter-particle potential force in moving particle semi-implicit method. Trans Jpn Soc Comput Eng Sci 2007:20070021

    Google Scholar 

  18. Ito J, Koshizuka S, Sakai M (2011) A study of surface tension model using inter-particle force and curvature for particle method. Proc Conf Comput Eng Sci 16:4

    Google Scholar 

  19. Ishii E, Sugii T (2012) Development of surface tension model for particle method. Trans Jpn Soc Mech Eng B 78(794):1710–1725

    Article  Google Scholar 

  20. Harada T, Koshizuka S, Shimazaki K (2008) Improvement of wall boundary calculation model for MPS Method. Trans Jpn Soc Comput Eng Sci 2008:20080006

    Google Scholar 

  21. Zhang TG, Koshizuka S, Shibata K, Murotani K, Ishii E (2015) Explicitly represented polygon wall boundary model for the explicit MPS method. Comput Part Mech 2(1):73–89

    Article  Google Scholar 

  22. Mitsume N, Yoshimura S, Murotani K, Yamada T (2001) Analysis of the void distribution in a circular tube with the two-fluid particle interaction method. J Nucl Sci Technol 38:392–402

    Article  Google Scholar 

  23. Sasaki S, Ogasawara T (2012) Development of polygon-wall boundary model using Delaunay triangulation by MPS method. J Jpn Soc Civil Eng B2 Coast Eng 68(2):I856–I860

    Google Scholar 

  24. Murozono K, Watanabe S, Koshizuka S (2009) Numerical analysis of capillary action in MPS method. Comput Mech Conf 22:528–529

    Google Scholar 

  25. Hattori T, Hiai D, Akaike S, Koshizuka S (2016) Improvement of wetting calculation model on polygon wall in the MPS method. Trans Jpn Soc Mech Eng 82(835):15–00602

    Google Scholar 

  26. Shoji M, Zhang XY (1992) Study of contact angle hysteresis: in relation to boiling surface wettability. Trans Jpn Soc Mech Eng B 58(550):1853–1859

    Article  Google Scholar 

  27. Extrand CW, Kumagai Y (1997) An experimental study of contact angle hysteresis. J Colloid Interface Sci 191(2):378–383

    Article  Google Scholar 

  28. Gao L, McCarthy TJ (2006) Contact angle hysteresis explained. Langmuir 22(14):6234–6237

    Article  Google Scholar 

  29. Eral HB, t’Mannetje DJCM (2013) Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym Sci 291(2):247–260

    Article  Google Scholar 

  30. Ahmed G, Sellier M, Jermy M, Taylor M (2014) Modeling the effects of contact angle hysteresis on the sliding of droplets down inclined surfaces. Eur J Mech B Fluids 48:218–230

    Article  Google Scholar 

  31. de Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57:827–863

    Article  Google Scholar 

  32. Collet P, Coninck JD, Dunlop F, Regnard A (1997) Dynamics of the contact line: contact angle hysteresis. Phys Rev Lett 79(19):3704

    Article  Google Scholar 

  33. Le Grand N, Daerr A, Limat L (2005) Shape and motion of drops sliding down an inclined plate. J Fluid Mech 541:293–315

    Article  Google Scholar 

  34. Kim JH, Kavehpour HP, Rothstein JP (2015) Dynamic contact angle measurements on superhydrophobic surfaces. Phys Fluids 27(3):032107

    Article  Google Scholar 

  35. Rio E, Daerr A, Andreotti B, Limat L (2005) Boundary conditions in the vicinity of a dynamic contact line: experimental investigation of viscous drops sliding down an inclined plane. Phys Rev Lett 94(2):024503

    Article  Google Scholar 

  36. Ryley DJ (1978) The shape of sessile water drops on inclined plane surfaces. J Colloid Interf Sci 65(2):394–396

    Article  Google Scholar 

  37. Miwa M, Nakajima A, Fujishima A, Hashimoto K, Watanabe T (2000) Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmuir 16(13):5754–5760

    Article  Google Scholar 

  38. Krasovitsky B, Marmur A (2005) Drops down the hill: theoretical study of limiting contact angles and the hysteresis range on a tilted plate. Langmuir 21(9):3881–3885

    Article  Google Scholar 

  39. ElSherbini AI, Jacobi AM (2006) Retention forces and contact angles for critical liquid drops on non-horizontal surfaces. J Colloid Interf Sci 299(2):841–849

    Article  Google Scholar 

  40. Katoh K, Azuma T, Higashine M, Miyamoto Y (2006) On the sliding down of liquid drops on inclined plates: 1st report, critical inclination angle of plates. Trans Jpn Soc Mech Eng B 72(717):1287–1294

    Article  Google Scholar 

  41. Katoh K, Higashine M, Nakamoto N, Azuma T (2007) On the sliding down of liquid drops on inclined plates: 2nd report, sliding angles on SAMs surfaces (thermal engineering). Trans Jpn Soc Mech Eng B 73(731):1548–1555

    Article  Google Scholar 

  42. Pierce E, Carmona FJ, Amirfazli A (2008) Understanding of sliding and contact angle results in tilted plate experiments. Colloid Surf A 323(1):73–82

    Article  Google Scholar 

  43. Puthenveettil BA, Senthilkumar VK, Hopfinger EJ (2013) Motion of drops on inclined surfaces in the inertial regime. J Fluid Mech 726:26–61

    Article  Google Scholar 

  44. Mourik SV, Veldman AEP, Dreyer ME (2005) Simulation of capillary flow with a dynamic contact angle. Microgravity Sci Technol 17(3):87–93

    Article  Google Scholar 

  45. Afkhami S, Zaleski S, Bussmann M (2009) A mesh-dependent model for applying dynamic contact angles to VOF simulations. J Comput Phys 228(15):5370–5389

    Article  MathSciNet  Google Scholar 

  46. Yokoi K, Vadillo D, Hinch J, Hutchings I (2009) Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface. Phys Fluids 21(7):072102-072102-12

    Article  Google Scholar 

  47. Dupont JB, Legendre D (2010) Numerical simulation of static and sliding drop with contact angle hysteresis. J Comput Phys 229(7):2453–2478

    Article  MathSciNet  Google Scholar 

  48. Annapragada SR, Murthy JY, Garimella SV (2012) Droplet retention on an incline. Int J Heat Mass Transf 55:1457–1465

    Article  Google Scholar 

  49. Das AK, Das PK (2009) Simulation of drop movement over an inclined surface using smoothed particle hydrodynamics. Langmuir 25(19):11459–11466

    Article  Google Scholar 

  50. Kordilla J, Tartakovsky AM, Geyer T (2013) A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces. Adv Water Resour 59:1–14

    Article  Google Scholar 

  51. Santos MJ, White JA (2011) Theory and simulation of angular hysteresis on planar surfaces. Langmuir 27:14868–14875

    Article  Google Scholar 

  52. Prabhala BR, Panchagnula MV, Vedantam S (2013) Three-dimensional equilibrium shapes of drops on hysteretic surfaces. Colloid Polym Sci 291:279–289

    Article  Google Scholar 

  53. Semprebon C, Brinkmann M (2014) On the onset of motion of sliding drops. Soft Matter 10:3325–3334

    Article  Google Scholar 

  54. Sauer RA (2016) A frictional sliding algorithm for liquid droplets. Comput Mech 58:937–956

    Article  MathSciNet  Google Scholar 

  55. Xie H, Koshizuka S, Oka Y (2008) Modeling the wetting effects in droplet impingement using particle method. Comput Model Eng Sci 377(1):1–16

  56. Natsui S, Soda R, Kon T, Ueda S, Kano J, Inoue R, Ariyama T (2012) Wettability model considering three-phase interfacial energetics in particle method. Mater Trans 53(4):662–670

    Article  Google Scholar 

  57. MPS Code Users Group. http://mps.q.t.u-tokyo.ac.jp/mpscug/. Accessed 13 July 2017

  58. Sakai M, Hashimoto N, Yoshida S, Suzuki S, Kameshima Y, Nakajima A (2007) Image analysis system for evaluating sliding behavior of a liquid droplet on a hydrophobic surface. Rev Sci Instrum 78:045103

    Article  Google Scholar 

  59. Annapragada SR, Murthy JY, Garimella SV (2012) Prediction of droplet dynamics on an incline. Int J Heat Mass Transf 55:1466–1474

    Article  Google Scholar 

  60. Jiang TS, Oh SG, Slattery JC (1979) Correlation for dynamic contact angle. J Colloid Interf Sci 69:74–77

    Article  Google Scholar 

  61. Bracke M, De Voeght F, Joos P (1989) The kinetics of wetting: the dynamic contact angle. Prog Colloid Polym Sci 79:142–149

    Article  Google Scholar 

  62. Seeberg JE, Berg JC (1992) Dynamic wetting in the flow of capillary number regime. Chem Eng Sci 47(17):4455–4464

    Article  Google Scholar 

  63. Cox RG (1986) The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J Fluid Mech 168:169–194

    Article  Google Scholar 

  64. Voinov OV (1976) Hydrodynamics of wetting. Fluid Dyn 11:714

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Hattori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hattori, T., Sakai, M., Akaike, S. et al. Numerical simulation of droplet sliding on an inclined surface using moving particle semi-implicit method. Comp. Part. Mech. 5, 477–491 (2018). https://doi.org/10.1007/s40571-018-0184-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-018-0184-9

Keywords

Navigation