Skip to main content
Log in

Discrete element modeling of microstructure of nacre

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The microstructure of nacre consists of polygon-shaped aragonite mineral tablets bonded by very thin layers of organic materials and is organized in a brick–mortar morphology. In this research, the discrete element method was utilized to model this structure. The aragonite mineral tablets were modeled with three-dimensional polygon particles generated by the Voronoi tessellation method to represent the Voronoi-like patterns of mineral tablets assembly observed in experiments. The organic matrix was modeled with a group of spring elements. The constitutive relations of the spring elements were inspired from the experimental results of organic molecules from the literature. The mineral bridges were modeled with simple elastic bonds with the parameters based on experimental data from the literature. The bulk stress–strain responses from the models agreed well with experimental results. The model results show that the mineral bridges play important roles in providing the stiffness and yield strength for the nacre, while the organic matrix in providing the ductility for the nacre. This work demonstrated the suitability of particle methods for modeling microstructures of nacre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang RZ, Suo Z, Evans AG, Yao N, Aksay IA (2001) Deformation mechanisms in nacre. J Mater Res 16(9):2485–2493

    Article  Google Scholar 

  2. Barthelat F, Tang H, Zavattieri PD, Li CM, Espinosa HD (2007) On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure. J Mech Phys Solids 55:306–337

    Article  Google Scholar 

  3. Schenk AS, Kim YY (2015) Unraveling the internal microstructure of biogenic and bioinspired calcite single crystals. MRS Bull 40(6):499–508

    Article  Google Scholar 

  4. Allison PG, Chandler MQ, Rodriguez RI, Williams BA, Moser RD, Weiss CA, Kennedy AJ, Poda AR, Lafferty BJ, Seiter JM, Hodo WD, Cook RF (2013) Mechanical properties and structure of the biological multilayered material system, Atractosteus spatula scales. Acta Biomater 9(2):5280–5288

    Article  Google Scholar 

  5. Allison PG, Rodriguez RI, Moser RD, Williams BA, Poda AR, Seiter JM, Lafferty BJ, Kennedy AJ, Chandler MQ (2014) Characterization of multi-layered fish scales (Atractosteus spatula) using nanoindentation, X-ray CT, FTIR, and SEM. J Video Exper 89:1–9

  6. Bruet BJF, Song J, Boyce MC, Ortiz C (2008) Materials design principals of ancient fish armour. Nat Mater 7(9):748–756

    Article  Google Scholar 

  7. Yang W, Gludovatz B, Zimmermann EA, Bale HA (2013) Structure and fracture resistance of alligator gar (Atractosteus spatula). Acta Biomater 9:5876–5889

    Article  Google Scholar 

  8. Tang H, Barthelat F, Espinosa HD (2007) An elasto-viscoplastic interface model for investigating the constitutive behavior of nacre. J Mech Phys Solids 55:1410–1438

    Article  MATH  Google Scholar 

  9. Han L, Wang J, Song J, Boyce MC, Ortiz C (2011) Direct quantification of the mechanical anisotropy and fracture of an individual exoskeleton layer via uniaxial compression of micropillars. Nano Lett 11(9):3868–3874

    Article  Google Scholar 

  10. Chandler MQ, Allison PG, Rodriguez RI, Moser RD, Kennedy AJ (2014) Finite element modeling of multilayered structures of fish scales. J Mech Behav Biomed Mater 40:375–389

    Article  Google Scholar 

  11. Katti K, Katti DR, Tang J, Pradhan S (2005) Modeling mechanical responses in a laminated biocomposite. J Mater Sci 40:1749–1755

  12. Qi HJ, Bruet BJF, Palmer JS, Ortiz C, Boyce MC (2005) Micromechanics and macromechanics of the tensile deformation of nacre. In: Holzapfel GA, Ogden RW (eds) Mechanics of biological tissues. Springer, Berlin, pp 175–189

    Google Scholar 

  13. Kumar P, Nukala VV, Šimunović S (2005) Statistical physics models for nacre fracture simulation. Phys Rev E 72(041919):1–9

    Google Scholar 

  14. Gao H, Ji IL, Arzt E, Fratzl P (2003) Materials become insensitive to flaws at nanoscale: lessons from nature. Proc Natl Acad Sci USA 100:5597–5600

    Article  Google Scholar 

  15. Anandarajah A (1994) Discrete element method for simulating behavior of cohesive soil. J Geotech Eng 120(9):1593–1613

    Article  Google Scholar 

  16. Yao M, Anandarajah A (2003) Three-dimensional discrete element method of analysis of clays. J Eng Mech ASCE 129(6):585–596

    Article  Google Scholar 

  17. Chandler MQ, Peters JF, Pelessone D (2010) Modeling nanoindentation of calcium-silicate-hydrate. J Transp Res Board 2:7

    Google Scholar 

  18. Chandler MQ, Peters JF, Pelessone D (2013) Discrete element modeling of calcium-silicate-hydrate. Model Simul Mater Sci Eng 21(5):055010

    Article  Google Scholar 

  19. Parratt K, Yao JM, Poirier GR, Yao N (2014) Plasma-etching of the organic layer in nacre. Soft Nanosci Lett 4:63–68

    Article  Google Scholar 

  20. Smith BL, SchaÈffer IE, Viani M, Thompson JB, Frederick NA, Kindt J, Belcher A, Stucky GD, Morse DE, Morse PK (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibers and composites. Nature 399(24):761–763

    Article  Google Scholar 

  21. Song F, Soh AK, Bai YL (2003) Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24:9

    Article  Google Scholar 

  22. Lopez MI, Martinez PEM, Meyers MA (2014) Organic interlamellar layers, mesolayers and mineral nanobridges: contribution to strength in abalone (Haliotis rufescence) nacre. Acta Biomater 10:2056–2064

    Article  Google Scholar 

  23. Hopkins MA (2004) Discrete element modeling with dilated particles. Eng Comput 21(2/3/4):422–430

    Article  MATH  Google Scholar 

  24. Knuth MA, Johnson JB, Hopkins MA, Sullivan RJ, Moore JM (2012) Discrete element modeling of a Mars Exploration Rover wheel in granular material. J Terramech 49:27–36

    Article  Google Scholar 

  25. Hopkins MA, Thorndike AS (2006) Floe formation in Arctic sea ice. J Geophys Res 111(C11S23):1–9

    Google Scholar 

  26. Hansma PG, Fantne KJH, Thurner PJ, Schitte G, Turner PJ, Udwin SF, Finch MM (2005) Sacrificial bonds in the interfibrillar matrix of bone. J Musculoskelet Neuronal Interact 5(4):313–315

    Google Scholar 

  27. Sumitomo T, Kakisawa H, Owaki Y, Kagawa Y (2008) In situ transmission electron microscopy observation of reversible deformation in nacre organic matrix. J Mater Res 23(5):1466–1471

    Article  Google Scholar 

  28. Lopez MI, Chen PY, McKittrick J, Meyers MA (2011) Growth of nacre in abalone: seasonal and feeding effects. Mater Sci Eng C 31(4):716–723

    Article  Google Scholar 

  29. Meyers MA, Lin AYM, Chen PY, Muyco J (2008) Mechanical strength of abalone nacre: role of the soft organic layer. J Mech Behav Biomed Mater 1(1):76–85

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support for this work provided by the US Army Engineer Research and Development Center (ERDC) Military Engineering 6.1 Basic Research Program. Permission to publish was granted by the Director, ERDC Geotechnical and Structures Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Qiang Chandler.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandler, M.Q., Cheng, JR.C. Discrete element modeling of microstructure of nacre. Comp. Part. Mech. 5, 191–201 (2018). https://doi.org/10.1007/s40571-017-0162-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-017-0162-7

Keywords

Navigation