Skip to main content
Log in

Continuum modeling of rate-dependent granular flows in SPH

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker–Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jaeger HM, Nagel SR, Behringer RP (1996) Granular solids, liquids, and gases. Rev Mod Phys 68(4):1259

    Article  Google Scholar 

  2. Savage SB, Sayed M (1984) Stresses developed by dry cohesionless granular materials sheared in an annular shear cell. J Fluid Mech 142:391–430

    Article  Google Scholar 

  3. Campbell CS (1990) Rapid granular flows. Annu Rev Fluid Mech 22(1):57–90

    Article  Google Scholar 

  4. MiDi GDR (2004) On dense granular flows. Eur Phys J E 14(4):341–365

    Article  Google Scholar 

  5. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730

    Article  Google Scholar 

  6. Wood DM (1990) Soil behaviour and critical state soil mechanics. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  7. Andrade JE, Chen Q, Le PH, Avila CF, Evans TM (2012) On the rheology of dilative granular media: bridging solid-and fluid-like behavior. J Mech Phys Solids 60(6):1122–1136

    Article  MathSciNet  Google Scholar 

  8. Forterre Y, Pouliquen O (2008) Flows of dense granular media. Annu Rev Fluid Mech 40:1–24

    Article  MathSciNet  MATH  Google Scholar 

  9. Jutzi M, Asphaug E (2011) Forming the lunar farside highlands by accretion of a companion moon. Nature 476(7358):69–72

    Article  Google Scholar 

  10. Lacaze L, Kerswell RR (2009) Axisymmetric granular collapse: a transient 3d flow test of viscoplasticity. Phys Rev Lett 102(10):108305

    Article  Google Scholar 

  11. Mast CM, Arduino P, Mackenzie-Helnwein P, Miller GR (2014) Simulating granular column collapse using the material point method. Acta Geotech 10(1):101–116

    Article  Google Scholar 

  12. Dunatunga S, Kamrin K (2015) Continuum modelling and simulation of granular flows through their many phases. J Fluid Mech 779:483–513

    Article  MathSciNet  Google Scholar 

  13. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Methods Geomech 32(12):1537

    Article  MATH  Google Scholar 

  14. Chen W, Qiu T (2011) Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method. Int J Geomech 12(2):127–135

    Article  Google Scholar 

  15. Minatti L, Paris E (2015) A sph model for the simulation of free surface granular flows in a dense regime. Appl Math Model 39(1):363–382

    Article  MathSciNet  Google Scholar 

  16. Ionescu IR, Mangeney A, Bouchut F, Roche O (2015) Viscoplastic modeling of granular column collapse with pressure-dependent rheology. J Non-Newton Fluid Mech 219:1–18

    Article  MathSciNet  Google Scholar 

  17. Monaghan JJ (1994) Simulating free surface flows with sph. J Comput Phys 110(2):399–406

    Article  MATH  Google Scholar 

  18. Zhang HP, Makse HA (2005) Jamming transition in emulsions and granular materials. Phys Rev E 72(1):011301

    Article  Google Scholar 

  19. Hurley RC, Andrade JE (2015) Strength of granular materials in transient and steady state rapid shear. Proc Eng 103:237–245

    Article  Google Scholar 

  20. Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-weakening in landslides on earth and on other planetary bodies. Nat Commun 5:3417

  21. Bolton MD (1986) The strength and dilatancy of sands. Geotechnique 36(1):65–78

  22. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703

    Article  MathSciNet  MATH  Google Scholar 

  23. Monaghan JJ, Lattanzio JC (1985) A refined particle method for astrophysical problems. Astron Astrophys 149:135–143

    MATH  Google Scholar 

  24. Price DJ, Monaghan JJ (2004) Smoothed particle magnetohydrodynamics-II. Variational principles and variable smoothing-length terms. Mon Not R Astron Soc 348(1):139–152

    Article  Google Scholar 

  25. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17(1):25–76

    Article  MathSciNet  MATH  Google Scholar 

  26. Plimpton S, Crozier P, Thompson A (2007) LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia Natl Lab 18:27–41

    Google Scholar 

  27. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1):375–408

    Article  MathSciNet  MATH  Google Scholar 

  28. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using sph. J Comput Phys 136(1):214–226

    Article  MATH  Google Scholar 

  29. Monaghan JJ (1989) On the problem of penetration in particle methods. J Comput Phys 82(1):1–15

    Article  MATH  Google Scholar 

  30. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574

    Article  Google Scholar 

  31. Silbert LE, Ertaş D, Grest GS, Halsey TC, Levine D, Plimpton SJ (2001) Granular flow down an inclined plane: bagnold scaling and rheology. Phys Rev E 64(5):051302

    Article  Google Scholar 

  32. Balmforth NJ, Kerswell RR (2005) Granular collapse in two dimensions. J Fluid Mech 538:399–428

    Article  MathSciNet  MATH  Google Scholar 

  33. Lube G, Huppert HE, Sparks RSJ, Hallworth MA (2004) Axisymmetric collapses of granular columns. J Fluid Mech 508:175–199

    Article  MATH  Google Scholar 

  34. Lube G, Huppert HE, Sparks RSJ, Freundt A (2005) Collapses of two-dimensional granular columns. Phys Rev E 72(4):041301

    Article  Google Scholar 

  35. Kerswell RR (2005) Dam break with coulomb friction: a model for granular slumping? Phys Fluids (1994-present) 17(5):057101

    Article  MathSciNet  MATH  Google Scholar 

  36. Staron L, Hinch EJ (2005) Study of the collapse of granular columns using two-dimensional discrete-grain simulation. J Fluid Mech 545:1–27

    Article  MATH  Google Scholar 

  37. Lagrée P-Y, Staron L, Popinet S (2011) The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a \(\mu \) (i)-rheology. J Fluid Mech 686:378–408

    Article  MathSciNet  MATH  Google Scholar 

  38. Farin M, Mangeney A, Roche O (2014) Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: Insights from laboratory experiments. J Geophys Res 119(3):504–532

    Article  Google Scholar 

  39. Mangeney A, Roche O, Hungr O, Mangold N, Faccanoni G, Lucas A (2010) Erosion and mobility in granular collapse over sloping beds. J Geophys Res(2003–2012) 115(F3):30

Download references

Acknowledgments

Support by the Air Force Office of Scientific Research Grant # FA9550-12-1-0091 through the University Center of Excellence in High-Rate Deformation Physics of Heterogeneous Materials is gratefully acknowledged. This work was partially performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan C. Hurley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hurley, R.C., Andrade, J.E. Continuum modeling of rate-dependent granular flows in SPH. Comp. Part. Mech. 4, 119–130 (2017). https://doi.org/10.1007/s40571-016-0132-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-016-0132-5

Keywords

Navigation