Skip to main content
Log in

DEM modeling of ball mills with experimental validation: influence of contact parameters on charge motion and power draw

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Discrete element method simulations of a 1:5-scale laboratory ball mill are presented in this paper to study the influence of the contact parameters on the charge motion and the power draw. The position density limit is introduced as an efficient mathematical tool to describe and to compare the macroscopic charge motion in different scenarios, i.a. with different values of the contact parameters. While the charge motion and the power draw are relatively insensitive to the stiffness and the damping coefficient of the linear spring-slider-damper contact law, the coefficient of friction has a strong influence since it controls the sliding propensity of the charge. Based on the experimental calibration and validation by charge motion photographs and power draw measurements, the descriptive and predictive capabilities of the position density limit and the discrete element method are demonstrated, i.e. the real position of the charge is precisely delimited by the respective position density limit and the power draw can be predicted with an accuracy of about 5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bicanic N (2005) Discrete element methods. In: Zienkiewicz OC, Taylor RL (eds) The finite element method in solid and structural mechanics. Elsevier Butterworth-Heinemann, Amsterdam, p 245–277. http://eprints.gla.ac.uk/33308/

  2. Boemer D (2015) Discrete element method modeling of ball mills—liner wear evolution. Master’s thesis, Université de Liège, Liège

  3. Cleary PW (1998) Predicting charge motion, power draw, segregation and wear in ball mills using discrete element methods. Miner Eng 11(11):1061–1080. doi:10.1016/S0892-6875(98)00093-4

    Article  Google Scholar 

  4. Cleary PW (2001) Charge behaviour and power consumption in ball mills: sensitivity to mill operating conditions, liner geometry and charge composition. Int J Miner Process 63(2):79–114. doi:10.1016/S0301-7516(01)00037-0

    Article  Google Scholar 

  5. Cleary PW (2001) Recent advances in DEM modelling of tumbling mills. Miner Eng 14(10):1295–1319. doi:10.1016/S0892-6875(01)00145-5

    Article  Google Scholar 

  6. Cleary PW (2009) Ball motion, axial segregation and power consumption in a full scale two chamber cement mill. Int J Miner Eng 22:809–820. doi:10.1016/j.mineng.2009.02.005

    Article  Google Scholar 

  7. Cleary PW, Morrisson RD, Morrell S (2003) Comparison of DEM and experiment for a scale model SAG mill. Int J Miner Process 68(1–4):129–165. doi:10.1016/S0301-7516(02)00065-0

    Article  Google Scholar 

  8. Cleary PW, Sawley ML (1999) Three-dimensional modelling of industrial flows. Second International Conference on CFD in the Minerals and Process Industries

  9. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Article  Google Scholar 

  10. Datta A, Mishra BK, Rajamani RK (1999) Analysis of power draw in ball mills by the discrete element method. Can Metall Q 38(2):133–140. doi:10.1016/S0008-4433(98)00039-1

    Article  Google Scholar 

  11. Djordjevic N (2005) Influence of charge size distribution on net-power draw of tumbling mill based on DEM modelling. Miner Eng 18(3):375–378. doi:10.1016/j.mineng.2004.06.001

    Article  Google Scholar 

  12. Djordjevic N, Shi FN, Morrison R (2004) Determination of lifter design, speed and filling effects in AG mills by 3D DEM. Miner Eng 17(11–12):1135–1142. doi:10.1016/j.mineng.2004.06.033

    Article  Google Scholar 

  13. Dong H, Moys MH (2002) Assessment of discrete element method for one ball bouncing in a grinding mill. Int J Miner Process 65(3–4):213–226. doi:10.1016/S0301-7516(01)00083-7

    Article  Google Scholar 

  14. Govender I (2005) X-ray motion analysis of charge particles in a laboratory mill. Ph.D. thesis, University of Cape Town, Cape Town

  15. Hertz HR (1881) Ueber die Beruehrung elastischer Koerper. Reine Angew Math 92:156–171

    Google Scholar 

  16. Kalala JT (2008) Discrete element method modelling of forces and wear on mill lifters in dry ball milling. Ph.D. thesis, University of the Witwatersrand, Johannesburg. http://wiredspace.wits.ac.za/bitstream/handle/10539/6031/Johnny

  17. Kalala JT, Breetzke M, Moys MH (2008) Study of the influence of liner wear on the load behaviour of an industrial dry tumbling mill using the discrete element method (DEM). Int J Miner Process 86(1–4):33–39. doi:10.1016/j.minpro.2007.10.001

    Article  Google Scholar 

  18. Kalala JT, Bwalya MM, Moys MH (2005) Discrete element method (DEM) modelling of evolving mill liner profiles due to wear. Part I: DEM validation. Miner Eng 18(15):1386–1391. doi:10.1016/j.mineng.2005.02.009

    Article  Google Scholar 

  19. Kalala JT, Bwalya MM, Moys MH (2005) Discrete element method (DEM) modelling of evolving mill liner profiles due to wear. Part II. Industrial case study. Miner Eng 18(15):1392–1397. doi:10.1016/j.mineng.2005.02.010

    Article  Google Scholar 

  20. Kawatra SK (2006) Advances in comminution. Society for Mining, Metallurgy, and Exploration Inc, Littleton

    Google Scholar 

  21. Khanal M, Morrison R (2008) Discrete element method study of abrasion. Miner Eng 21(11):751–760. doi:10.1016/j.mineng.2008.06.008

    Article  Google Scholar 

  22. McBride AT, Powell, MS (2006) A structured approach to modelling SAG mill liner wear – numerical modelling of liner evolution. International autogenous and semi autogenous grindingtechnology, 3:120–132 . http://www.infomine.com/library/publications/docs/McBride2006.pdf

  23. Mindlin RD (1949) Compliance of elastic bodies in contact. Trans ASME J Appl Mech 16:259–268

    MathSciNet  MATH  Google Scholar 

  24. Mindlin RD, Deresiewicz H (1953) Elastic spheres in contact under varying oblique forces. J Appl Mech 20:327–344

    MathSciNet  MATH  Google Scholar 

  25. Mishra BK (2003) A review of computer simulation of tumbling mills by the discrete element method: part I—contact mechanics. Int J Miner Process 71(1–4):73–93. doi:10.1016/S0301-7516(03)00032-2

    Article  Google Scholar 

  26. Mishra BK (2003) A review of computer simulation of tumbling mills by the discrete element method: part II—practical applications. Int J Miner Process 71(1–4):95–112. doi:10.1016/S0301-7516(03)00031-0

    Article  Google Scholar 

  27. Mishra BK, Rajamani RK (1992) The discrete element method for the simulation of ball mills. Appl Math Model 16(11):598–604. doi:10.1016/0307-904X(92)90035-2

    Article  MATH  Google Scholar 

  28. Moys MH, Van Nierop MA, Van Tonder JC, Glover G (2000) Validation of the discrete element method (DEM) by comparing predicted load behaviour of a grinding mill with measured data. In: Massacci P (ed) Proceedings of the XXI International Mineral Processing Congress, 1st edn. Elsevier, Rome, 23–27 July 2000. http://store.elsevier.com/Proceedings-of-the-XXI-International-Mineral-Processing-Congress-July-23-27-2000-Rome-Italy/isbn-9780080543895/

  29. O’Sullivan C (2011) Particulate discrete element modelling: a geomechanics perspective. Spon Press, Abingdon

    Google Scholar 

  30. O’Sullivan C, Bray JD (2004) Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme. Eng Comput 21(2-4): 278–303. doi:10.1108/02644400410519794

  31. Pournin L, Liebling TM, Mocellin A (2001) Molecular-dynamics force models for better control of energy dissipation in numerical simulations of dense granular media. Phys Rev E 65(1):278–303. doi:10.1103/PhysRevE.65.011302

    Article  Google Scholar 

  32. Powell MS, Weerasekara NS, Cole S, LaRoche RD, Favier J (2011) DEM modelling of liner evolution and its influence on grinding rate in ball mills. Miner Eng 24(3–4):341–351. doi:10.1016/j.mineng.2010.12.012

    Article  Google Scholar 

  33. Pöschel T, Schwager T (2015) Computational granular dynamics. Models and algorithms, 1st edn. Springer, Berlin. doi:10.1007/3-540-27720-X

  34. Radziszewski P, Morrell S (1998) Fundamental discrete element charge motion model validation. Miner Eng 11(12):1161–1178. doi:10.1016/S0892-6875(98)00103-4

    Article  Google Scholar 

  35. Rajamani RK, Mishra BK, Venugopal R, Datta A (2000) Discrete element analysis of tumbling mills. Powder Technol 109(1–3):105–112. doi:10.1016/S0032-5910(99)00230-2

    Article  Google Scholar 

  36. Rajamani RK, Rashidi S, Dhawan N (2014) Advances in discrete element method application to grinding mills. In: Anderson CG, Dunne RC, Uhrie JL (eds) Mineral processing and extractive metallurgy: 100 years of innovation, pp 117–128. http://content.lib.utah.edu/cdm/ref/collection/uspace/id/10649

  37. Rezaeizadeh M, Fooladi M, Powell MS, Weerasekara NS (2010) An experimental investigation of the effects of operating parameters on the wear of lifters in tumbling mills. Miner Eng 23(7):558–562. doi:10.1016/j.mineng.2009.12.010

    Article  Google Scholar 

  38. Schroeder WJ, Martin KM (2005) 1 Overview of visualization. In: Johnson CD, Hansen CR (eds) Visualization handbook. Butterworth-Heinemann, Burlington. doi:10.1016/B978-012387582-2/50003-4

    Google Scholar 

  39. Schwager T, Pöschel T (2007) Coefficient of restitution and linear-dashpot model revisited. Granul Matt 9(6):465–469. doi:10.1007/s10035-007-0065-z

    Article  Google Scholar 

  40. Smilauer V, Catalano E, Chareyre B, Dorofeenko S, Duriez J, Dyck N, Elias J, Er B, Eulitz A, Gladky A, Guo N, Jakob C, Kneib F, Kozicki J, Marzougui D, Maurin R, Modenese C, Scholtes L, Sibille L, Stransky J, Sweijen T, Thoeni K, Yuan C (2015) Yade documentation, 2nd edn. The Yade Project. doi:10.5281/zenodo.34073

  41. Thornton C (2015) Granular dynamics, contact mechanics and particle system simulations. A DEM study, Particle technology series, vol 24, 1st edn. Springer, Berlin. doi:10.1007/978-3-319-18711-2

  42. Van Nierop MA, Glover G, Hinde AL, Moys MH (2001) A discrete element method investigation of the charge motion and power draw of an experimental two-dimensional mill. Int J Miner Process 61(2):77–92. doi:10.1016/S0301-7516(00)00028-4

  43. Venugopal R, Rajamani RK (2001) 3D simulation of charge motion in tumbling mills by the discrete element method. Powder Technol 115(2):157–166. doi:10.1016/S0032-5910(00)00333-8

  44. Šmilauer V (2010) Cohesive particle model using the discrete element method on the Yade platform. Ph.D. thesis, Czech Technical University in Prague, Faculty of Civil Engineering & Université Grenoble I—Joseph Fourier, École doctorale I-MEP2

  45. Walton OR (1983) Application of molecular dynamics to macroscopic particles. Int J Eng Sci 22(8–10):1097–1107. doi:10.1016/0020-7225(84)90110-1

    Google Scholar 

  46. Weerasekara NS, Powell MS, Cleary PW, Tavares LM, Evertsson M, Morrison RD, Quist J, Carvalho RM (2013) The contribution of DEM to the science of comminution. Powder Technol 248(0): 3–24. doi:10.1016/j.powtec.2013.05.032

  47. Wills BA, Napier-Munn TJ (2005) Wills’ mineral processing technology, 7th edn. Butterworth-Heinemann, Oxford. http://www.sciencedirect.com/science/book/9780750644501

Download references

Acknowledgments

We gratefully acknowledge the company Magotteaux International s.a. for providing the charge motion photographs and power draw measurements presented in this paper. The first author would also like to thank the Fonds National de la Recherche Scientifique (FNRS, Belgium) for his research fellowship and the YADE community [40] for sharing their source code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Boemer.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boemer, D., Ponthot, JP. DEM modeling of ball mills with experimental validation: influence of contact parameters on charge motion and power draw. Comp. Part. Mech. 4, 53–67 (2017). https://doi.org/10.1007/s40571-016-0125-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-016-0125-4

Keywords

Navigation