Skip to main content
Log in

A FEM-DEM technique for studying the motion of particles in non-Newtonian fluids. Application to the transport of drill cuttings in wellbores

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

We present a procedure for coupling the finite element method (FEM) and the discrete element method (DEM) for analysis of the motion of particles in non-Newtonian fluids. Particles are assumed to be spherical and immersed in the fluid mesh. A new method for computing the drag force on the particles in a non-Newtonian fluid is presented. A drag force correction for non-spherical particles is proposed. The FEM-DEM coupling procedure is explained for Eulerian and Lagrangian flows, and the basic expressions of the discretized solution algorithm are given. The usefulness of the FEM-DEM technique is demonstrated in its application to the transport of drill cuttings in wellbores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bourgoyne AT, Millheim KK, Chenevert ME, Young FS (1991) Applied drilling engineering. Society of Petroleum Engineers, Richardson

    Google Scholar 

  2. Sifferman TR, Myers GM, Haden EL, Wahl HA (1974) Drill-cutting transport in full-scale vertical annuli. J Pet Technol 26:1–295

    Article  Google Scholar 

  3. Oñate E (1998) Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput Methods Appl Mech Eng 151:233–267

    Article  MathSciNet  MATH  Google Scholar 

  4. Oñate E, Celigueta MA, Latorre S, Casas G, Rossi R, Rojek J (2014) Lagrangian analysis of multiscale particulate flows with the particle finite element method. Comput Part Mech 1:85–102

    Article  Google Scholar 

  5. Zohdi T (2007) An introduction to modelling and simulation of particulate flows., Computational science and engineeringSIAM, Philadelphia

    Book  MATH  Google Scholar 

  6. Cremonesi M, Frangi A, Perego U (2011) A Lagrangian finite element approach for the simulation of water-waves induced by landslides. Comput Struct 89:1086–1093

    Article  Google Scholar 

  7. Franci A, Oñate E, Carbonell JM (2015) On the effect of the bulk tangent matrix in partitioned solution schemes for nearly incompressible fluids. Accepted for publication in Int J Numer Methods Eng. doi:10.1002/nme.4839

  8. Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989

    Article  MathSciNet  MATH  Google Scholar 

  9. Idelsohn SR, Mier-Torrecilla M, Oñate E (2009) Multi-fluid flows with the particle finite element method. Comput Methods Appl Mech Eng 198:2750–2767

    Article  MATH  Google Scholar 

  10. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004c) The particle finite element method—an overview. Int J Comput Methods 1(2):267–307

    Article  MATH  Google Scholar 

  11. Oñate E, Celigueta MA, Idelsohn SR (2006a) Modeling bed erosion in free surface flows by the particle finite element method. Acta Geotechnia 1(4):237–252

    Article  Google Scholar 

  12. Oñate E, García J, Idelsohn SR, Del Pin F (2006c) FIC formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches. Comput Methods Appl Mech Eng 195(23–24):3001–3037

    Article  MATH  Google Scholar 

  13. Oñate E, Idelsohn SR, Celigueta MA, Rossi R (2008) Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows. Comput Methods Appl Mech Eng 197(19–20):1777–1800

    Article  MathSciNet  MATH  Google Scholar 

  14. Oñate E (2009) Structural analysis with the finite element method, vol 1., Basis and solidsCIMNE-Springer, Barcelona

    Book  MATH  Google Scholar 

  15. Oñate E, Celigueta MA, Idelsohn SR, Salazar F, Suárez B (2011) Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput Mech 48(3):307–318

    Article  MathSciNet  MATH  Google Scholar 

  16. Oñate E, Franci A, Carbonell JM (2014) Lagrangian formulation for finite element analysis of quasi-incompressible fluids with reduced mass losses. Int J Numer Methods Fluids 74(10):699–731

    Article  MathSciNet  Google Scholar 

  17. Avci B, Wriggers P (2012) A DEM-FEM coupling approach for the direct numerical simulation of 3D particulate flows. J Appl Mech 79(1):7

    Article  Google Scholar 

  18. Cundall PA, Strack ODL (1979) A discrete numerical method for granular assemblies. Geotechnique 29:47–65

    Article  Google Scholar 

  19. Oñate E, Rojek J (2004b) Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems. Comput Methods Appl Mech Eng 193:3087–3128

    Article  MATH  Google Scholar 

  20. Oñate E, Zárate F, Miquel J, Santasusana M, Celigueta MA, Arrufat F, Gandikota R, Ring KL (2015) A local constitutive model for the discrete element method. Application to geomaterials and concrete. Comput Part Mech 2(2):139–160

    Article  Google Scholar 

  21. Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New York

    Google Scholar 

  22. Coussy O (2004) Poromechanics. Wiley, Chichester

    MATH  Google Scholar 

  23. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: the basis and fundamentals, 6th edn. Elsevier, Amsterdam

  24. Zienkiewicz OC, Taylor RL, Nithiarasu P (2005) The finite element method for fluid dynamics, 6th edn. Elsevier, Swansea

    MATH  Google Scholar 

  25. Belytschko T, Liu WK, Moran B (2013) Non linear finite element for continua and structures, 2nd edn. Wiley, New York

  26. Donea J, Huerta A (2003) Finite element method for flow problems. Wiley, Chichester

    Book  Google Scholar 

  27. Jackson R (2000) The dynamics of fluidized particles. Cambridge monographs on mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  28. Best Practice Guidelines for Computational Fluid Dynamics of Dispersed Multiphase Flows. By SIAMUF, Swedish Industrial Association for Multiphase Flows, ERCOFTAC (2008)

  29. Ansley RW, Smith TN (1967) Motion of spherical particles in a Bingham plastic. AIChE J 13(6):1193–1196

    Article  Google Scholar 

  30. Brookes GF, Whitmore RL (1969) Drag forces in Bingham plastics. Rheologica Acta 8(4):472–480

    Article  Google Scholar 

  31. Kelessidis VC, Mpandelis G (2004) Measurements and prediction of terminal velocity of solid spheres falling through stagnant pseudoplastic liquids. Powder Technol 147:117–125

    Article  Google Scholar 

  32. Chien SF (1994) Settling velocity of irregularly shaped particles. SPE Drill Complet 9:281

    Article  Google Scholar 

  33. Shah SN, El Fadili Y, Chhabra RP (2007) New model for single spherical particle settling velocity in power law (visco-inelastic) fluids. Int J Multiph Flow 33:51–66

    Article  Google Scholar 

  34. Walker RE, Mayes TM (1975) Design of muds for carrying capacity. J Pet Technol 27(7):893

    Article  Google Scholar 

  35. Walker RE (1976) Hydraulics limits are set by flow restrictions. Oil Gas J 74:86–90

    Google Scholar 

  36. Haider A, Levespiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58:63–70

    Article  Google Scholar 

  37. Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int J Numer Methods Eng 60(1):255–281

    Article  MathSciNet  MATH  Google Scholar 

  38. Kratos (2015) Open source software platform for multiphysics computations. CIMNE, Barcelona, www.cimne.com/kratos

  39. GiD (2015) The personal pre/postprocessor. www.gidhome.com, CIMNE, Barcelona

  40. Breuer M, Rodi W (1994). Large-eddy simulation of turbulent flow through a straight square duct and a 180\(^{\circ }\) bend. In Fluid mechanics and its applications, Vol. 26, Voke PR, Kleiser L, Hollet JP (Eds.). Direct and large-eddy simulation I. Selected papers from the First ERCOFTAC workshop on direct and large-eddy simulation. Guildford, 27–30 Mar 1994. Kluwer Academic Publishers, Dordrecht, pp. 273–285

  41. He X, Luo LS (1997) Lattice Boltzmann model for the incompressible NavierStokes equation. J Stat Phys 88(3–4):927–944

    Article  MathSciNet  MATH  Google Scholar 

  42. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was carried out with financial support by Weatherford. This research was also partially supported by project SAFECON of the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Oñate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celigueta, M.A., Deshpande, K.M., Latorre, S. et al. A FEM-DEM technique for studying the motion of particles in non-Newtonian fluids. Application to the transport of drill cuttings in wellbores. Comp. Part. Mech. 3, 263–276 (2016). https://doi.org/10.1007/s40571-015-0090-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-015-0090-3

Keywords

Navigation