Skip to main content
Log in

Characterizing flow in oil reservoir rock using SPH: absolute permeability

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical ‘real world’ means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Note, if multiple mineral phases are present, different corresponding boundary phases could be assigned if the effect of each on flow characteristics were expected to be distinguishably different.

  2. i.e. the positioning of in-flow and out-flow pore throats would need to match one another perfectly as in a unit cell (see [44, 65, 67, 71]) for such conditions to be applicable.

  3. Note, given the model geometry used in the numerical tests, i.e. Fig. 3, \(F_d\) was determined as the force from any particle within the bounds of the rock sample only, to avoid any disparities that may otherwise arise from the inclusion of additional supply volume particle forces.

  4. Note, local sub-block porosity of 33.71 % could have been used, however, global porosity is more useful given that multiple sub-blocks of different local porosity will be used in the next section.

  5. Note, increasing particle density, increases numerical expense so, while model (or physical) time to convergence was reduced, actual execution (or wall clock) time was still greater.

  6. Note, Zhu et al. [44] suggest that \(\sim \)15 particles throat\(^{-1}\) are necessary to achieve accurate flow profiles though porous media, consistent with the findings here.

References

  1. Tiab D, Donaldson EC (2003) Petrophysics: theory and practice of measuring reservoir rock and fluid transport properties, 2nd edn. Elsevier, San Diego

    Google Scholar 

  2. Johnson EF, Bossler DP, Naumann VO (1959) Calculation of relative permeability from displacement experiments. Pet Trans (AIME) 216:370–372

    Google Scholar 

  3. Jones SC, Roszelle WO (1978) Graphical techniques for determining relative permeability from displacement experiments. J Pet Technol 30(5):807–817. doi:10.2118/6045-PA

    Article  Google Scholar 

  4. Kerig PD, Watson AT (1986) Relative-permeability estimation from displacement experiments: an error analysis. SPE Reserv Eng 1(2):175–182. doi:10.2118/12589-PA

    Article  Google Scholar 

  5. Taber JJ (1969) Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water. SPE J 9(1):3–12. doi:10.2118/2098-PA

    Article  Google Scholar 

  6. Teige GMG, Hermanrud C, Thomas WH, Wilson OB, Nordgård Bolås HM (2005) Capillary resistance and trapping of hydrocarbons: a laboratory experiment. Pet Geosci 11(2):125–129. doi:10.1144/1354-079304-609

    Article  Google Scholar 

  7. Adler PM, Jacquin CG, Quiblier JA (1990) Flow in simulated porous media. Int J Multiph Flow 16(4):691–712

    Article  MATH  Google Scholar 

  8. Adler PM, Jacquin CG, Thovert JF (1992) The formation factor of reconstructed porous media. Water Resour Res 28(6):1571–1576. doi:10.1029/92WR00059

    Article  Google Scholar 

  9. Hazlett RD (1997) Statistical characterization and stochastic modeling of pore networks in relation to fluid flow. Math Geol 29(6):801–822. doi:10.1007/BF02768903

    Article  Google Scholar 

  10. Roberts JN, Schwartz LM (1985) Grain consolidation and electrical conductivity in porous media. Phys Rev B 31(9):5990–5997. doi:10.1103/PhysRevB.31.5990

    Article  Google Scholar 

  11. Schwartz LM, Martys N, Bentz DP, Garboczi EJ, Torquato S (1993) Cross-property relations and permeability estimation in model porous media. Phys Rev E 48(6):4584–4591. doi:10.1103/PhysRevE.48.4584

    Article  Google Scholar 

  12. Yeong CLY, Torquato S (1998) Reconstructing random media. Phys Rev E 57(1):495–506. doi:10.1103/PhysRevE.57.495

    Article  MathSciNet  Google Scholar 

  13. Yeong CLY, Torquato S (1998) Reconstructing random media. II. Three-dimensional media from two-dimensional cuts. Phys Rev E 58(1):224–233. doi:10.1103/PhysRevE.58.224

    Article  MathSciNet  Google Scholar 

  14. Coles ME, Hazlett RD, Spanne P, Soll WE, Muegge EL, Jones KW (1998) Pore level imaging of fluid transport using synchrotron X-ray microtomography. J Pet Sci Eng 19(1–2):55–63. doi:10.1016/S0920-4105(97)00035-1

    Article  Google Scholar 

  15. Dunsmuir JH, Ferguson SR, D’Amico KL, Stokes JP (1991) X-ray microtomography: A new tool for the characterization of porous media. Paper SPE-22860-MS presented at the SPE annual technical conference and exhibition. SPE J. doi:10.2118/22860-MS (Society of Petroleum Engineers)

  16. Flannery BP, Deckman HW, Roberge WG, D’Amico KL (1987) Three-dimensional X-ray microtomography. Science 237(4821):1439–1444. doi:10.1126/science.237.4821.1439

    Article  Google Scholar 

  17. Spanne P, Thovert JF, Jacquin CJ, Lindquist WB, Jones KW, Adler PM (1994) Synchrotron computed microtomography of porous media: topology and transports. Phys Rev Lett 73(14):2001–2004. doi:10.1103/PhysRevLett.73.2001

    Article  Google Scholar 

  18. Arns CH, Sheppard AP, Saadatfar M, Knackstedt MA (2006) Prediction of permeability from NMR response: surface relaxivity heterogeneity. In: SPWLA 47th annual logging symposium, p. GG. Society of Petrophysicists and Well Log Analysts

  19. Arns CH, Sheppard AP, Sok RM, Knackstedt MA (2005) NMR petrophysical predictions on digitized core images. In: SPWLA 46th annual logging symposium, p. MMM. Society of Petrophysicists and Well Log Analysts

  20. Auzerais FM, Dunsmuir J, Ferréol BB, Martys N, Olson J, Ramakrishnan TS, Rothman DH, Schwartz LM (1996) Transport in sandstone: a study based on three dimensional microtomography. Geophys Res Lett 23(7):705–708. doi:10.1029/96GL00776

    Article  Google Scholar 

  21. Ryu S, Zhao W, Leu G, Singer PM, Cho HJ, Keehm Y (2009) Numerical modeling of complex porous media for borehole applications. arXiv:0908.1962

  22. Schwartz LM, Auzerais F, Dunsmuir J, Martys N, Bentz DP, Torquato S (1994) Transport and diffusion in three-dimensional composite media. Phys A 207(1–3):28–36. doi:10.1016/0378-4371(94)90351-4

    Article  Google Scholar 

  23. Zhan X, Schwartz L, Morgan D, Smith W, Toksöz N (2008) Numerical modeling of transport properties and comparison to laboratory measurements. Technical Report, Massachusetts Institute of Technology. http://dspace.mit.edu/bitstream/handle/1721.1/68208/Zhan_2008_final.pdf?sequence=1. Accessed 5 May 2015

  24. Arns CH, Knackstedt MA, Pinczewski WV, Garboczi EJ (2002) Computation of linear elastic properties from microtomographic images: methodology and agreement between theory and experiment. Geophysics 67(5):1396–1405. doi:10.1190/1.1512785

    Article  Google Scholar 

  25. Knackstedt MA, Arns CH, Sheppard AP, Senden TJ, Sok RM, Cinar Y, Pinczewski WV, Ioannidis M, Padhy GS (2007) Archie’s exponents in complex lithologies derived from 3D digital core analysis. In: SPWLA 48th annual logging symposium, p. UU. Society of Petrophysicists and Well Log Analysts

  26. Knackstedt MA, Arns CH, Sok RM, Sheppard AP (2007) 3D pore scale characterization of carbonate core: Relating pore types and interconnectivity to petrophysical and multiphase flow properties. Paper IPTC-11775-MS presented at the international petroleum technology conference, Abu Dhabi, UAE, 4–6 December. IPTC J. doi:10.2523/11775-MS

  27. Zhao W, Picard G, Leu G, Singer PM (2010) Characterization of single-phase flow through carbonate rocks: quantitative comparison of NMR flow propagator measurements with a realistic pore network model. Transp Porous Media 81(2):305–315. doi:10.1007/s11242-009-9402-5

    Article  Google Scholar 

  28. Blunt MJ, Jackson MD, Piri M, Valvatne PH (2002) Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv Water Resour 25(8–12):1069–1089. doi:10.1016/S0309-1708(02)00049-0

    Article  Google Scholar 

  29. Sok RM, Arns CH, Knackstedt MA, Senden TJ, Sheppard AP, Averdunk H, Pinczewski WV, Okabe H (2007) Estimation of petrophysical parameters from 3D images of carbonate core. In: SPWLA Middle East regional symposium, pp 1–15. Society of Petrophysicists and Well Log Analysts

  30. Ferréol B, Rothman DH (1995) Lattice–Boltzmann simulations of flow through Fontainebleau sandstone. Transp Porous Media 20(1–2):3–20. doi:10.1007/BF00616923

    Article  Google Scholar 

  31. Kameda A, Dvorkin J, Keehm Y, Nur A, Bosl W (2006) Permeability–porosity transforms from small sandstone fragments. Geophysics 71(1):N11–N19. doi:10.1190/1.2159054

    Article  Google Scholar 

  32. Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annu Rev Fluid Mech 30:329–364. doi:10.1146/annurev.fluid.30.1.329

    Article  MathSciNet  Google Scholar 

  33. Hazlett RD, Chen SY, Soll WE (1998) Wettability and rate effects on immiscible displacement: Lattice Boltzmann simulation in microtomographic images of reservoir rocks. J Pet Sci Eng 20(3–4):167–175. doi:10.1016/S0920-4105(98)00017-5

    Article  Google Scholar 

  34. Hazlett RD, Coles ME, Jones KW, Andrews B, Dowd B, Siddons P, Peskin A (1996) Developments in synchrotron X-ray microtomography for application to flow in porous media. In: Proceedings of the 1996 annual technical conference of the Society of Core Analysists, p 9630

  35. Huang JJ, Shu C, Chew YT (2009) Lattice Boltzmann study of droplet motion inside a grooved channel. Phys Fluids 21:022103. doi:10.1063/1.3077800

    Article  MATH  Google Scholar 

  36. Zheng HW, Shu C, Chew YT (2006) A Lattice Boltzmann model for multiphase flows with large density ratio. J Comput Phys 218(1):353–371. doi:10.1016/j.jcp.2006.02.015

    Article  MathSciNet  MATH  Google Scholar 

  37. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024. doi:10.1086/112164

    Article  Google Scholar 

  38. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    Article  MATH  Google Scholar 

  39. Liu GR, Liu MB (2007) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore

    MATH  Google Scholar 

  40. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574. doi:10.1146/annurev.aa.30.090192.002551

    Article  MathSciNet  Google Scholar 

  41. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406. doi:10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  42. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759. doi:10.1088/0034-4885/68/8/R01

    Article  MathSciNet  MATH  Google Scholar 

  43. Tartakovsky AM, Meakin P (2006) Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Adv Water Resour 29:1464–1478. doi:10.1016/j.advwatres.2005.11.014

    Article  Google Scholar 

  44. Zhu Y, Fox PJ, Morris JP (1999) A pore-scale numerical model for flow through porous media. Int J Numer Anal Methods Geomech 23:881–904

    Article  MATH  Google Scholar 

  45. Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int J Numer Anal Methods Geomech 32(12):1537–1570. doi:10.1002/nag.688

    Article  MATH  Google Scholar 

  46. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408. doi:10.1016/S0045-7825(96)01090-0

    Article  MathSciNet  MATH  Google Scholar 

  47. Español P, Revenga M (2003) Smoothed dissipative particle dynamics. Phys Rev E 67:026705. doi:10.1103/PhysRevE.67.026705

    Article  Google Scholar 

  48. Liu M, Meakin P, Huang H (2007) Dissipative particle dynamics simulation of pore-scale multiphase fluid flow. Water Resour Res 43:W04411. doi:10.1029/2006WR004856

    Google Scholar 

  49. Liu M, Meakin P, Huang H (2007) Dissipative particle dynamics simulations of multiphase fluid flow in microchannels and microchannel networks. Phys Fluids 19:033302. doi:10.1063/1.2717182

    Article  MATH  Google Scholar 

  50. Hu XY, Adams NA (2006) A multi-phase SPH method for macroscopic and mesoscopic flows. J Comput Phys 213:844–861. doi:10.1016/j.jcp.2005.09.001

    Article  MathSciNet  MATH  Google Scholar 

  51. Tartakovsky AM, Meakin P (2005) Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys Rev E 72:1–9. doi:10.1103/PhysRevE.72.026301

    Article  Google Scholar 

  52. Tartakovsky AM, Meakin P (2005) Simulation of unsaturated flow in complex fractures using smoothed particle hydrodynamics. Vandose Zone J 4:848–855. doi:10.2136/vzj2004.0178

    Article  Google Scholar 

  53. Tartakovsky AM, Meakin P, Ward AL (2009) Smoothed particle hydrodynamics model of non-aqueous phase liquid flow and dissolution. Transp Porous Media 76:11–34. doi:10.1007/s11242-008-9230-z

    Article  Google Scholar 

  54. Tartakovsky AM, Meakin P (2005) A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability. J Comput Phys 207:610–624. doi:10.1016/j.jcp.2005.02.001

    Article  MATH  Google Scholar 

  55. Tartakovsky AM, Meakin P, Scheibe TD, West RME (2007) Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J Comput Phys 222:654–672. doi:10.1016/j.jcp.2006.08.013

    Article  MathSciNet  MATH  Google Scholar 

  56. Cleary PW (1999) Modelling confined multi-material heat and mass flows using SPH. Appl Math Model 22:981–993. doi:10.1016/S0307-904X(98)10031-8

    Article  Google Scholar 

  57. Jiang F, Sousa ACM (2006) SPH numerical modeling for ballistic–diffusive heat conduction. Numer Heat Transf B Fundam 50:499–515. doi:10.1080/10407790600646677

    Article  Google Scholar 

  58. Monaghan JJ, Kocharyan A (1995) SPH simulations of multi-phase flow. Comput Phys Commun 87(1–2):225–235. doi:10.1016/0010-4655(94)00174-Z

    Article  MATH  Google Scholar 

  59. Price DJ (2008) Modelling discontinuities and Kelvin–Helmholtz instabilities in SPH. J Comput Phys 227:10040–10057. doi:10.1016/j.jcp.2008.08.011

    Article  MathSciNet  MATH  Google Scholar 

  60. Rook R, Yildiz M, Dost S (2007) Modeling transient heat transfer using SPH and implicit time integration. Numer Heat Transf B Fundam 51:1–23. doi:10.1080/10407790600762763

    Article  Google Scholar 

  61. Børve S, Omang M, Trulsen J (2001) Regularized smoothed particle hydrodynamics: a new approach to simulating magnetohydrodynamic shocks. Astrophys J 561(1):82–93. doi:10.1086/323228

    Article  Google Scholar 

  62. Dolag K, Bartelmann M, Lesch H (1999) SPH simulations of magnetic fields in galaxy clusters. Astron Astrophys 348:351–363

  63. Holmes DW, Williams JR, Tilke P (2010) An events based algorithm for distributing concurrent tasks on multi-core architectures. Comput Phys Commun 181(2):341–354. doi:10.1016/j.cpc.2009.10.009

    Article  Google Scholar 

  64. Takeda H, Miyama SM, Sekiya M (1994) Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog Theor Phys 92(5):939–960. doi:10.1143/PTP.92.939

    Article  Google Scholar 

  65. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136:214–226. doi:10.1006/jcph.1997.5776

    Article  MATH  Google Scholar 

  66. Sigalotti LDG, Klapp J, Sira E, Meleán Y, Hasmy A (2003) SPH simulations of time-dependent Poiseuille flow at low Reynolds numbers. J Comput Phys 191:622–638. doi:10.1016/S0021-9991(03)00343-7

    Article  MATH  Google Scholar 

  67. Zhu Y, Fox PJ (2001) Smoothed particle hydrodynamics model for diffusion through porous media. Transp Porous Media 43:441–471. doi:10.1023/A:1010769915901

    Article  Google Scholar 

  68. Ellero M, Adams NA (2011) SPH simulations of flow around a periodic array of cylinders confined in a channel. Int J Numer Methods Eng 86(8):1027–1040. doi:10.1002/nme.3088

    Article  MATH  Google Scholar 

  69. Vázquez-Quesada A, Ellero M (2012) SPH simulations of a viscoelastic flow around a periodic array of cylinders confined in a channel. J Non-Newton Fluid Mech 167–168:1–8. doi:10.1016/j.jnnfm.2011.09.002

    Article  MATH  Google Scholar 

  70. Grilli M, Vázquez-Quesada A, Ellero M (2013) Transition to turbulence and mixing in a viscoelastic fluid flowing inside a channel with a periodic array of cylindrical obstacles. Phys Rev Lett 110:174501. doi:10.1103/PhysRevLett.110.174501

    Article  Google Scholar 

  71. Holmes DW, Williams JR, Tilke P (2010) Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media. Int J Numer Anal Methods Geomech. doi:10.1002/nag.898

  72. Benz W (1990) Smooth particle pydrodynamics—a review. In: Buchler JR (ed) Numerical modelling of nonlinear stellar pulsations problems and prospects. Kluwer Academic, Boston, pp 269–288

    Chapter  Google Scholar 

  73. Hoover WG (2006) Smooth particle applied mechanics: the state of the art, advanced series in nonlinear dynamics, vol 25. World Scientific, Hackensack

    MATH  Google Scholar 

  74. Li S, Liu WK (2007) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  75. Hoover WG (1998) Isomorphism linking smooth particles and embedded atoms. Physica A 260:244–254. doi:10.1016/S0378-4371(98)00357-4

    Article  MathSciNet  Google Scholar 

  76. Morris JP (2000) Simulating surface tension with smoothed particle hydrodynamics. Int J Numer Methods Fluids 33:333–353

    Article  MATH  Google Scholar 

  77. Morris JP, Zhu Y, Fox PJ (1999) Parallel simulations of pore-scale flow through porous media. Comput Geotech 25:227–246. doi:10.1016/S0266-352X(99)00026-9

    Article  Google Scholar 

  78. Herrnstein A, Wickett M, Rodrigue G (2005) Structured adaptive mesh refinement using leapfrog time integration on a staggered grid for ocean models. Ocean Model 9:283–304. doi:10.1016/j.ocemod.2004.07.002

    Article  Google Scholar 

  79. Johnson GR, Beissel SR (1996) Normalized smoothing functions for SPH impact computations. Int J Numer Methods Eng 39(16):2725–2741

    Article  MATH  Google Scholar 

  80. Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi RA (1993) High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75. doi:10.1006/jcph.1993.1199

    Article  MATH  Google Scholar 

  81. Arns CH, Knackstedt MA, Pinczewski WV (2001) Accurate estimation of transport properties from microtomographic images. Geophys Res Lett 28(17):3361–3364. doi:10.1029/2001GL012987

    Article  Google Scholar 

  82. Arns CH, Knackstedt MA, Pinczewski WV, Martys NS (2004) Virtual permeability on microtomographic images. J Pet Sci Eng 45(1–2):41–46. doi:10.1016/j.petrol.2004.05.001

    Article  Google Scholar 

  83. Lindquist WB, Venkatarangan A (1999) Investigating 3D geometry of porous media from high resolution images. Phys Chem Earth A Solid Earth Geod 24(7):593–599. doi:10.1016/S1464-1895(99)00085-X

    Article  Google Scholar 

  84. Oh W, Lindquist WB (1999) Image thresholding by indicator krigin. IEEE Trans Pattern Anal Mach Intell 21(7):590–602. doi:10.1109/34.777370

    Article  Google Scholar 

  85. van der Hoef MA, Beetstra R, Kuipers JAM (2005) Lattice–Boltzmann simulations of low-Reynolds-number flows past mono- and bidisperse arrays of spheres: results for the permeability and drag force. J Fluid Mech 528:233–254. doi:10.1017/S0022112004003295

    Article  MathSciNet  MATH  Google Scholar 

  86. Larson RE, Higdon JJL (1989) A periodic grain consolidation model of porous media. Phys Fluids A 1(1):38–46. doi:10.1063/1.857545

    Article  MATH  Google Scholar 

  87. Tanikawa W, Shimamoto T (2009) Comparison of Klinkenberg-corrected gas permeability and water permeability in sedimentary rocks. Int J Rock Mech Min Sci 46(2):229–238. doi:10.1016/j.ijrmms.2008.03.004

    Article  Google Scholar 

  88. Klinkenberg LJ (1941) The permeability of porous media to liquids and gases. Drilling and production practice. American Petroleum Institute, Washington, DC, pp 200–213

    Google Scholar 

  89. Wu YS, Pruess K, Persoff P (1998) Gas flow in porous media with Klinkenberg effects. Transp Porous Media 32(1):117–137. doi:10.1023/A:1006535211684

  90. Saller AH, Henderson N (1998) Distribution of porosity and permeability in platform dolomites: insight from the permian of west Texas. AAPG Bull 82(8):1528–1550

    Google Scholar 

  91. Saller A, Ball B, Robertson S, McPherson B, Wene C, Nims R, Gogas J (2001) Reservoir characteristics of Devonian cherts and their control on oil recovery: Dollarhide field, west Texas. AAPG Bull 85(1):35–50. doi:10.1306/8626C753-173B-11D7-8645000102C1865D

    Google Scholar 

  92. Westphal H, Eberli GP, Smith LB, Grammer GM, Kislak J (2004) Reservoir characterization of the Mississippian Madison Formation, Wind River basin, Wyoming. AAPG Bull 88(4):405–432. doi:10.1306/12020301029

    Article  Google Scholar 

  93. Woody RE, Gregg JM, Koederitz LF (1996) Effect of texture on petrophysical properties of Dolomite: evidence from the Cambrian–Ordovician of southeastern Missouri. AAPG Bull 80(1):119–132. http://archives.datapages.com/data/bulletns/1994-96/data/pg/0080/0001/0100/0119.htm. Accessed 5 May 2015

  94. Lucia FJ (1995) Rock-fabric/petrophysical classification of carbonate pore space for reservoir characterization. AAPG Bull 79(9):1275–1300

  95. Sneider RM, Sneider JS (2000) New oil in old places. Search and Discovery 10007. http://www.searchanddiscovery.com/documents/sneider/. Accessed 5 May 2015

  96. Katz DA, Eberli GP, Swart PK, Smith LBS Jr (2006) Tectonic–hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs. Montana and Wyoming. AAPG Bull 90(11):1803–1841. doi:10.1306/03200605072

    Article  Google Scholar 

  97. Ovaysi S, Piri M (2010) Direct pore-level modeling of incompressible fluid flow in porous media. J Comput Phys 229(19):7456–7476. doi:10.1016/j.jcp.2010.06.028

    Article  MathSciNet  MATH  Google Scholar 

  98. Dvorkin J, Nur A (2009) Scale of experiment and rock physics trends. Lead Edge 28(1):110–115. doi:10.1190/1.3064155

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Schlumberger-Doll Research Center and Saudi Aramco for their joint financial support of this research. Additional thanks to Schlumberger-Doll Research for providing the X-ray \(\upmu \)CT data used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Holmes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmes, D.W., Williams, J.R., Tilke, P. et al. Characterizing flow in oil reservoir rock using SPH: absolute permeability. Comp. Part. Mech. 3, 141–154 (2016). https://doi.org/10.1007/s40571-015-0038-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-015-0038-7

Keywords

Navigation