Skip to main content

Advertisement

Log in

Manufacture of a UO2-Based Nuclear Fuel with Improved Thermal Conductivity with the Addition of BeO

  • Published:
Metallurgical and Materials Transactions E

Abstract

The low thermal conductivity of oxide nuclear fuels is a performance-limiting parameter. Enhancing this property may provide a contribution toward establishing accident-tolerant fuel forms. In this study, the thermal conductivity of UO2 was increased through the fabrication of ceramic-ceramic composite forms with UO2 containing a continuous BeO matrix. Fuel with a higher thermal conductivity will have reduced thermal gradients and lower centerline temperatures in the fuel pin. Lower operational temperatures will reduce fission gas release and reduce fuel restructuring. Additions of BeO were made to UO2 fuel pellets in 2.5, 5, 7.5, and 10 vol pct concentrations with the goals of establishing reliable lab-scale processing procedures, minimizing porosity, and maximizing thermal conductivity. The microstructure was characterized with electron probe microanalysis, and the thermal properties were assessed by light flash analysis and differential scanning calorimetry. Reliable, high-density samples were prepared using compaction pressure between 200 and 225 MPa and sintering times between 4 and 6 hours. It was found that the thermal conductivity of UO2 improved approximately 10 pct for each 1 vol pct BeO added over the measured temperature range 298.15 K to 523.15 K (25 °C to 250 °C) with the maximum observed improvement being \(\sim \)100 pct, or doubled, at 10 vol pct BeO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

[14]

Similar content being viewed by others

References

  1. M. Lyons, R. Boyle, J. Davies, V. Hazel, T. Rowland, Nucl. Eng. Des. 21(2), 167–199 (1972)

    Article  Google Scholar 

  2. J.D.B. Lambert, R. Strain: Oxide Fuels Wiley, Weinheim, 2006.

  3. R. Latta, S.T. Revankar, A.A. Solomon: Heat Transf. Eng. 29(4), 357–365 (2008)

    Article  Google Scholar 

  4. K.H. Sarma, J. Fourcade, S.G. Lee, A.A. Solomon, J. Nucl. Mater. 352(1), 324–333 (2006)

    Article  Google Scholar 

  5. S.M. McDeavitt, J.C. Ragusa, S.T. Revankar, A.A. Solomon, J.P. Malone, Nucl. Eng. Int. 56(682), 40–42 (2011)

    Google Scholar 

  6. S.M. McDeavitt, M.J. Naramore, R. Miller, J.C. Ragusa, S.T. Revankar, A.A. Solomon, J.P. Malone: Proc. of the Am. Nucl. Soc. Winter Meeting, Las Vegas, NV., vol.103 (273) 7 Nov 2010.

  7. S.M. McDeavitt, G. Garcia, J.C. Ragusa, J. Smith, J.P. Malone: Proc. of 2013 LWR Fuel Performance Meeting, Topfuel 2013, Charlotte, NC, 18 Sept 2012, 2013, p. 8588.

  8. G.A. Slack, S. Austerman, J. Appl. Phys. 42(12), 4713–4717 (2003)

    Article  Google Scholar 

  9. W. Manly, J. Nucl. Mater. 14, 3–18 (1964)

    Article  Google Scholar 

  10. E. Bettis, R. Schroeder, G. Cristy, H. Savage, R. Affel, L. Hemphill, Nucl. Sci. Eng. 2(6), 804–825 (1957)

    Article  Google Scholar 

  11. A. Goodjohn, H. Stewart, J. Nucl. Mater. 14, 19–28 (1964)

    Article  Google Scholar 

  12. C. McNeilly: The pseudo ternary system BeO–UO2–PuO., Tech. Rep. Battelle-Northwest, Richland, Wash. Pacific Northwest Lab 1967.

  13. J.C. Ragusa, S.M. McDeavitt, M.J. Naramore: Proc. of the Am. Nucl. Soc. Winter Meeting, Las Vegas, NV., vol. 103 (761) 7 Nov 2010.

  14. S. Ishimoto, M. Hirai, K. Ito, Y. Korei, J. Nucl. Sci. Technol. 33(2), 134–140 (1996)

    Article  Google Scholar 

  15. P. Balakrishna, C.K. Asnani, R. Kartha, K. Ramachandran, K.S. Babu, V. Ravichandran, B.N. Murty, C. Ganguly, Nucl. Technol. 127(3), 375–381 (1999)

    Article  Google Scholar 

  16. M. Bannister, J. Nucl. Mater. 14, 315–321 (1964)

    Article  Google Scholar 

  17. L.A. Goldsmith, J.A.M. Douglas: Measurements on thermal conductivity of uranium dioxide at 670–1270 K, Tech. Rep. TGR 2103(W), 1971.

  18. R.C. Hawkings, A.S. Bain: Aecl report aecl-1790: Tech. Rep., 1963.

  19. K. Maca, V. Pouchly, A.R. Boccaccini, Sci. Sinter. 40, 117–122 (2008)

    Article  Google Scholar 

  20. I. Barin, Thermochemical Properties of Inorganic Substances (Springer, New York, 1977)

    Book  Google Scholar 

  21. I. Barin: Thermochemical Data of Pure Substances, 1989, VCH, Verlagsgesellschaft mbH, Weinheim.

    Google Scholar 

  22. M. O’Neill, Anal. Chem. 38(10), 1331–1336 (1966)

    Article  Google Scholar 

  23. R. Cowan, J. Appl. Phys. 34(4), 926–927 (1963)

    Article  Google Scholar 

  24. J. Fink: J. Nucl. Mater., 2000, vol. 279(1), pp. 1–18

    Article  Google Scholar 

Download references

Acknowledgments

The work has been supported by IBC Advanced Alloys Corporation and National Science Foundation Award No. HRD-1249272 and 1252521.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis H. Ortega.

Additional information

Manuscript submitted September 23, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia, C.B., Brito, R.A., Ortega, L.H. et al. Manufacture of a UO2-Based Nuclear Fuel with Improved Thermal Conductivity with the Addition of BeO. Metallurgical and Materials Transactions E 4, 70–76 (2017). https://doi.org/10.1007/s40553-017-0108-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40553-017-0108-2

Keywords

Navigation