Skip to main content

Laser pattern-induced unidirectional lubricant flow for lubrication track replenishment

Abstract

Effective oil replenishment to the lubrication track of a running bearing is crucial to its sustainable operation. Reliable practical solutions are rare despite numerous theoretical studies were conducted in the last few decades. This paper proposes the use of surface effect, wettability gradient, to achieve the goal. This method is simple and can be nicely implemented using femtosecond laser ablation. A periodic comb-tooth-shaped pattern with anisotropic wetting capability is devised and its effect on the anisotropic spreading behaviour of an oil droplet is studied. Results show that the comb-tooth-shaped pattern enables the rearrangement of oil distribution, thereby escalating oil replenishment to the lubrication track. The effect is due to the unbalanced interfacial force created by the surface pattern. The influence of the shape and the pitch of teeth, which are the two governing factors, on oil transport is also reported. The effects of the newly devised surface pattern on lubrication are experimentally evaluated under the conditions of limited lubricant supply. These results are promising, demonstrating the reduction in bearing friction and the increase in lubricating film thickness.

References

  1. Sathyan K, Hsu H Y, Lee S H, Gopinath K. Long-term lubrication of momentum wheels used in spacecrafts-An overview. Tribol Int 43: 259–267 (2010)

    Article  Google Scholar 

  2. Varel C, Bohringer K F. Liquid droplet micro-bearings on directional circular surface ratchets. In 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, 2014: 983–986.

  3. Meng Y G, Xu J, Jin Z M, Braham P, Hu Y Z. A review of recent advances in tribology. Friction 8(2): 221–300 (2020)

    Article  Google Scholar 

  4. Jiang S, Mao H. Investigation of the high speed rolling bearing temperature rise with oil-air lubrication. ASME J Tribol 133(2): 021101 (2011)

    Article  Google Scholar 

  5. Fadi A, Křupka I, Hartl M. Effects of out-of-contact lubricant channeling on friction and film thickness in starved elastohydrodynamic lubrication point contacts. P I Mech Eng J-J Eng 231(4): 432–440 (2017)

    Google Scholar 

  6. Li X M, Guo F, Wong P L, Zhao Y. Regulation of lubricant supply by wettability gradient in rolling EHL contacts. Tribol Int 120: 565–574 (2018)

    Article  Google Scholar 

  7. Dimitrakopoulos P, Higdon J J L. On the gravitational displacement of three-dimensional fluid droplets from inclined solid surfaces. J Fluid Mech 395: 181–209 (1999)

    Article  Google Scholar 

  8. Annapragada S R, Murthy J Y, Garimella S V. Droplet retention on an incline. Int J Heat Mass Tran 55: 1457–1465 (2012)

    Article  Google Scholar 

  9. Ody T, Panth M, Sommers A D, Eid K F. Controlling the motion of ferrofluid droplets using surface tension gradients and magnetoviscous pinning. Langmuir 32(27): 6967–6976 (2016)

    Article  Google Scholar 

  10. Sommers A D, Brest T J, Eid K F. Topography-based surface tension gradients to facilitate water droplet movement on laser-etched copper substrates. Langmuir 29(38): 12043–12050 (2013)

    Article  Google Scholar 

  11. Martinez-Calderon M, Rodriguez A, Dias-Ponte A, Morant-Minana M C, Gomez-Aranzadi M, Olaizola S M. Femtosecond laser fabrication of highly hydrophobic stainless steel surface with hierarchical structures fabricated by combining ordered microstructures and LIPSS. Appl Sur Sci 374: 81–89 (2016)

    Article  Google Scholar 

  12. Chaudhury M K, Whitesides G M. How to make water run uphill. Science 256(5063): 1539–1541 (1992)

    Article  Google Scholar 

  13. Ichimura K, Oh S K, Nakagawa M. Light-driven motion of liquids on a photoresponsive surface. Science 288(5471): 1624–1626 (2000)

    Article  Google Scholar 

  14. Kataoka D E, Troian S M. Patterning liquid flow on the microscopic scale. Nature 402(6763): 794–797 (1999)

    Article  Google Scholar 

  15. Spikes H. The history and mechanisms of ZDDP. Tribol Lett 17(3): 469–489 (2004)

    Article  Google Scholar 

  16. Qu J, Bansal D G, Yu B, Howe J Y, Luo H, Dai S, Li H, Blau P J, Bunting B G, Mordukhovich G. Anitwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl Mater Inter 4(2): 997–1002 (2012)

    Article  Google Scholar 

  17. Kalin M, Kus M. New strategy for reducing the EHL friction in steel contacts using additive-formed oleophobic boundary films. Friction 9(6): 1346–1360 (2021)

    Article  Google Scholar 

  18. Ryu D Y, Shin K, Drockenmuller E, Hawker C J, Russell T P. A generalized approach to the modification of solid surfaces. Science 308(5719): 236–239 (2005)

    Article  Google Scholar 

  19. Hampson M R, Wardzinski B. The evaluation and validation of new creep barrier films for prevention of oil loss by migration. In Proceedings of the 16th European Space Mechanisms and Tribology Symposium, Bilbao, Spain, 2015: 23–25.

  20. Liao Q, Wang H, Zhu X, Li M. Liquid droplet movement on horizontal surface with gradient surface energy. Sci China Ser E 49(6): 733–741 (2006)

    Article  Google Scholar 

  21. Ito Y, Heydari M, Hashimoto A, Konno T, Hirasawa A, Hori S, Kurita K, Nakajima A. The movement of a water droplet on a gradient surface prepared by photodegradation. Langmuir 23(4): 1845–1850 (2007)

    Article  Google Scholar 

  22. Liu C L, Guo F, Wong P L, Li X M. Tribological behaviour of surfaces with stepped wettability under limited lubricant supply. Tribol Int 141: 105880 (2020)

    Article  Google Scholar 

  23. Kietzig A M, Hatzikiriakos S G, Englezos P. Patterned superhydrophobic metallic surfaces. Langmuir 25(8): 4821–4827 (2009)

    Article  Google Scholar 

  24. Liu T, Wei H, Li J, Lu J, Zhang Y. Wettability control of sapphire by surface texturing in combination with femtosecond laser irradiation and chemical etching. ChemistrySelect 5(31): 9555–9562 (2020)

    Article  Google Scholar 

  25. Riveiro A, Pou P, Val J D, Comesaa R, Pou J. Laser texturing to control the wettability of materials. Procedia CIRP 94: 879–884 (2020)

    Article  Google Scholar 

  26. Xu Y, Zheng Q, Abuflaha R, Olson D, Furlong O, You T, Zhang Q Q, Hu X G, Tysoe W T. Influence of dimple shape on tribofilm formation and tribological properties of textured surfaces under full and starved lubrication. Tribol Int 136: 267–275 (2019)

    Article  Google Scholar 

  27. Zhang S, Zeng X, Matthews D T A, Igartua A, Rodriguez-Vidal E, Contreras Fortes J C, Saenz de Viteri V, Pagano F, Wadman B, Wiklund E D, van der Heide E. Selection of micro-fabrication techniques on stainless steel sheet for skin friction. Friction 4(2) 89–104 (2016)

    Article  Google Scholar 

  28. Grützmacher P G, Rosenkranz A, Gachot C. How to guide lubricants-tailored laser surface patterns on stainless steel. Appl Sur Sci 370: 59–66 (2016)

    Article  Google Scholar 

  29. Bliznyuk O, Jansen H P, Kooij E S, Zandvliet H J W, Poelsema B. Smart design of stripe-patterned gradient surfaces to control droplet motion. Langmuir 27(17): 11238–11245 (2011)

    Article  Google Scholar 

  30. Ta V D, Dunn A, Wasley T J, Li J, Kay R W, Stringer J, Smith P J, Esenturk E, Connaughton C, Shephard J D. Laser textured surface gradients. Appl Sur Sci 371: 583–589 (2016)

    Article  Google Scholar 

  31. Hans M, Müller F, Grandthyll S, Hüfner S, Mücklich F. Anisotropic wetting of copper alloys induced by one-step laser micro-patterning. Appl Sur Sci 263: 416–422 (2012)

    Article  Google Scholar 

  32. Rosenkranz A, Fleischmann S, Gachot C, Mücklich F. Anisotropic spreading behavior of PAO oil on laser-patterned stainless steel surfaces. Adv Eng Mater 17(11): 1645–1651 (2015)

    Article  Google Scholar 

  33. Choudhury D, Rebenda D, Sasaki S, Hekrle P, Vrbka M, Zou M. Enhanced lubricant film formation through micro-dimpled hard-on-hard artificial hip joint: An in-situ observation of dimple shape effects. J Mech Behav Biomed Mater 81: 120–129 (2018)

    Article  Google Scholar 

  34. Hirayama T, Ikeda M, Suzuki T, Matsuoka T, Sawada H, Kawahara K. Effect of nanotexturing on increase in elastohydrodynamic lubrication oil film thickness. J Tribol-T ASME 136(3): 031501 (2014)

    Article  Google Scholar 

  35. Hao X, Song X, Li L, He N. Tribological properties of textured cemented carbide surfaces of different wettability produced by pulse laser. In Proceedings of the 12th International Manufacturing Science and Engineering Conference, Los Angeles, USA, 2017.

  36. Alheshibri M H, Rogers N G, Sommers A D, Eld K F. Spontaneous movement of water droplets on patterned Cu and Al surfaces with wedge shaped gradients. Appl Phys Lett 102: 174103 (2013)

    Article  Google Scholar 

  37. Chang T L, Tsai T K, Yang H P, Huang J Z. Effect of ultra-fast laser texturing on surface wettability of microfluidic channels. Microelectron Eng 98: 684–688 (2012)

    Article  Google Scholar 

  38. Rye R R, Mann J A, Yost F G. The flow of liquids in surface grooves. Langmuir 12(2): 555–565 (1996)

    Article  Google Scholar 

  39. Williams J. Engineering Tribology. Cambridge (UK): Cambridge University Press, 2005.

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the National Natural Science Foundation of China (No. 51775286) and the Research Grants Council of Hong Kong (Project No. CityU11269216) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Guo or Patrick Wong.

Additional information

Chenglong LIU. He received his B.Sc. and Ph.D. degrees from Qingdao University of Technology in 2014 and 2020, respectively. Then he joined the Laboratory of Tribology and Surface Engineering at the same university. His research interests include advanced lubrication technology and equipment, experimental and theoretical research on lubrication, and design of low energy consumption bearings.

Feng GUO. He received his B.Sc. and M.Sc. degrees from Qingdao Institute of Architecture and Engineering in 1991 and 1998, respectively. He got his Ph.D. degree from City University of Hong Kong in 2003. His is now a chair professor in mechanical engineering in Qingdao University of Technology. His research areas cover the numerical calculation and experiments of film lubrication, optical measurement of lubricating film thickness at sub-micro/nano scale, and instrumentation development and advanced industrial lubrication technique.

Patrick WONG. He obtained his B.Sc. degree from City University, London in 1983 and Ph.D. degree from the University of Hong Kong in 1990. Dr. Wong started his academic career in the City University of Hong Kong since 1990. He is currently an associate professor in the Department of Mechanical Engineering in the City University of Hong Kong. His research interests include rolling element bearings, interfacial phenomena, and lubrication.

Xinming LI. He got his Ph.D. degree in School of Mechanical Engineering of Qingdao University of Technology in 2012. He is now employed as a full-time associate professor and the executive director of Laboratory of Tribology and Surface Engineering at Qingdao University of Technology. His recent research interests include grease and minimal quantity lubrication mechanisms of rolling bearings, lubricant rheology, and lubrication approaches of machine elements.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Guo, F., Wong, P. et al. Laser pattern-induced unidirectional lubricant flow for lubrication track replenishment. Friction 10, 1234–1244 (2022). https://doi.org/10.1007/s40544-021-0528-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40544-021-0528-y

Keywords

  • laser surface texture
  • limited lubricant supply
  • comb-tooth-shaped pattern
  • lubricant replenishment
  • friction coefficient