Skip to main content

Advertisement

SpringerLink
Go to cart
  1. Home
  2. Friction
  3. Article
Stress-augmented thermal activation: Tribology feels the force
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Multiscale Friction in Lubricant-Surface Systems for High-Performance Transmissions Under Mild Wear

24 May 2018

E. Humphrey, N. Morris, … H. Rahnejat

Bauschinger Effect or Kinematic Hardening: Bridging Microstructure and Continuum Mechanics

04 June 2022

Olivier Bouaziz, Hyoung Seop Kim, … Yuri Estrin

Wear law in mixed lubrication based on stress-promoted thermal activation

23 July 2020

Xin Pei, Wei Pu, … Ying Zhang

Thermoelastic Instability when Heterogeneous Materials with Different Properties Sliding over a Rigid Surface

01 January 2022

I. Yu. Tsukanov

An Analytical Method for Predicting Temperature Rise Due to Multi-body Thermal Interaction in Deformation Processing

19 January 2022

Harish Singh Dhami, Priti Ranjan Panda, … Koushik Viswanathan

A review of advances in tribology in 2020–2021

11 October 2022

Yonggang Meng, Jun Xu, … Wenzhong Wang

The Emerging of Stress Triaxiality and Lode Angle in Both Solid and Damage Mechanics: A Review

01 September 2021

Mohammed Algarni, Sami Ghazali & Mohammed Zwawi

Molecular dynamics simulation of effects of nanoparticles on frictional heating and tribological properties at various temperatures

08 April 2019

Chengzhi Hu, Jizu Lv, … Dawei Tang

Adhesive wear mechanisms uncovered by atomistic simulations

06 September 2018

Jean-François Molinari, Ramin Aghababaei, … Enrico Milanese

Download PDF
  • Review Article
  • Open Access
  • Published: 07 February 2018

Stress-augmented thermal activation: Tribology feels the force

  • Hugh Spikes1 

Friction volume 6, pages 1–31 (2018)Cite this article

  • 1706 Accesses

  • 81 Citations

  • 2 Altmetric

  • Metrics details

Abstract

In stress-augmented thermal activation, the activation energy barrier that controls the rate of atomic and molecular processes is reduced by the application of stress, with the result that the rate of these processes increases exponentially with applied stress. This concept has particular relevance to Tribology, and since its development in the early twentieth century, it has been applied to develop important models of plastic flow, sliding friction, rheology, wear, and tribochemistry. This paper reviews the development of stress-augmented thermal activation and its application to all of these areas of Tribology. The strengths and limitations of the approach are then discussed and future directions considered. From the scientific point of view, the concept of stress-augmented thermal activation is important since it enables the development of models that describe macroscale tribological performance, such as friction coefficient or tribofilm formation, in terms of the structure and behaviour of individual atoms and molecules. This both helps us understand these processes at a fundamental level and also provides tools for the informed design of lubricants and surfaces.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Karman T V. Physikalische Grundlagen der Festigkeitslehre, Section 24 67–770, Sept. 1914. Art 31, of Mechanics of deformable bodies in Enzyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Vol. IV, Part 4, C, eds. Felix Klein and Conrad Muller, Leipzig, 1907–1914.

  2. Prandtl L. Ein Gedankenmodell zur kinetischen Theorie der festen Körper. Z Angew Math Mech 8(2): 85–106 (1928)

    Article  MATH  Google Scholar 

  3. Eyring H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J Chem Phys 4(4): 283–291 (1936)

    Article  Google Scholar 

  4. Moore W J. Physical Chemistry. 4th ed. London (UK): Longman Green & Co., 1963.

    Google Scholar 

  5. Ewell R H. The reaction rate theory of viscosity and some of its applications. J Appl Phys 9(4): 252–269 (1938)

    Article  Google Scholar 

  6. Becker R. Über die plastizität amorpher und kristalliner fester körper. Phys Z 26: 919–925 (1925)

    MATH  Google Scholar 

  7. Kincaid J F, Eyring H, Stearn A E. The theory of absolute reaction rates and its application to viscosity and diffusion in the liquid state. Chem Rev 28(2): 301–365 (1941)

    Article  Google Scholar 

  8. Glasstone S, Laidler K J, Eyring H. Theory of Rate Processes. New York (USA): McGraw-Hill Inc., 1941.

    Google Scholar 

  9. Ewell R H, Eyring H. Theory of the viscosity of liquids as a function of temperature and pressure. J Chem Phys 5(9): 726–736 (1937)

    Article  Google Scholar 

  10. Powell R E, Eyring H. Mechanisms for the relaxation theory of viscosity. Nature 154(3909): 427–428 (1944)

    Article  Google Scholar 

  11. Eyring H, Ree T, Hirai N. The viscosity of high polymers— The random walk of a group of connected segments. Proc Nat Acad Sci USA 44(12): 1213–1217 (1958)

    Article  Google Scholar 

  12. Moore Jr W J, Eyring H. Theory of the viscosity of unimolecular films. J Chem Phys 6(7): 391–394 (1938)

    Article  Google Scholar 

  13. Kauzmann W. Flow of solid metals from the standpoint of the chemical-rate theory. Trans Am Inst Min Metall Eng 143: 57–83 (1941)

    Google Scholar 

  14. Kauzmann W, Eyring H. The viscous flow of large molecules. J Amer Chem Soc 62(11): 3113–3125 (1940)

    Article  Google Scholar 

  15. Tobolsky A, Eyring H. Mechanical properties of polymeric materials. J Chem Phys 11(3): 125–134 (1943)

    Article  Google Scholar 

  16. Spikes H A, Tysoe W. On the commonality between theoretical models for fluid and solid friction, wear and tribochemistry. Tribol Lett 59(1): 21 (2015)

    Article  Google Scholar 

  17. Schallamach A. The velocity and temperature dependence of rubber friction. Proc Phys Soc B 66(5): 386–392 (1953)

    Article  Google Scholar 

  18. Schallamach A. Friction and abrasion of rubber. Wear 1(5): 384–417 (1958)

    Article  Google Scholar 

  19. Bueche F. Tensile strength of plastics above the glass temperature. J Appl Phys 26(9): 1133–1140 (1955)

    Article  Google Scholar 

  20. Bueche F. Tensile strength of plastics below the glass temperature. J Appl Phys 28(7): 784–787 (1957)

    Article  Google Scholar 

  21. Bueche F. Mechanical degradation of high polymers. J Appl Polym Sci 4(10): 101–106 (1960)

    Article  Google Scholar 

  22. Zhurkov S N, Narzullaev B N. Time dependence of the strength of solids. Zh Tekh Fiz 23(10): 1677–1689 (1953)

    Google Scholar 

  23. Zhurkov S N, Tomashevsky É E. Investigation of the strength of solids. Zh Tekh Fiz 25(1): 66–73 (1955)

    Google Scholar 

  24. Zhurkov S N. Kinetic concept of the strength of solids. Int J Fract Mech 1(4): 311–322 (1965)

    Google Scholar 

  25. Zhurkov S N, Korsukov V E. Atomic mechanism of fracture of solid polymers. J Polym Sci Part B Polym Phys 12(2): 385–398 (1974)

    Article  Google Scholar 

  26. Andrade E N D C, Roscoe R. Glide in metal single crystals. Proc Phys Soc 49(2): 152–177 (1937)

    Article  Google Scholar 

  27. Orowan E. Zur TemperaturabhÄngigkeit der Kristallplastizität. Zeitschr Phys 102(1–2): 112–118 (1936)

    Article  Google Scholar 

  28. Orowan E. Problems of plastic gliding. Proc Phys Soc 52(1): 8–22 (1940)

    Article  Google Scholar 

  29. De Bruyne N A. Note on viscous and plastic flow. Proc Phys Soc 53(3): 251–257 (1941)

    Article  Google Scholar 

  30. Seitz F, Read T A. Theory of the plastic properties of solids. III. J Appl Phys 12(6): 470–486 (1941)

    Article  Google Scholar 

  31. Gemant A. Frictional phenomena. XI: C-solids. J Appl Phys 13(11): 688–696 (1942)

    Article  Google Scholar 

  32. Feltham P. Influence of structure on the plastic flow of steel above the A3-point. Nature 169(4310): 976(1952)

    Article  Google Scholar 

  33. Mott N F. Dislocations, work-hardening and creep. Nature 175(4452): 365–367 (1955)

    Article  Google Scholar 

  34. Seeger A. CXXXII. The generation of lattice defects by moving dislocations, and its application to the temperature dependence of the flow-stress of F.C.C. crystals. London Edinburgh Dublin Philos Mag J Sci 46(382): 1194–1217 (1955)

    Google Scholar 

  35. Schoeck G. The activation energy of dislocation movement. Phys Status Solidi (b) 8(2): 499–507 (1965)

    Article  Google Scholar 

  36. Gibbs G B. The thermodynamics of thermally-activated dislocation glide. Phys Status Solidi (b) 10(2): 507–512 (1965)

    Article  Google Scholar 

  37. Cottrell A H. The time laws of creep. J Mech Phys Solids 1(1): 53–63 (1952)

    Article  Google Scholar 

  38. Kocks U F, Argon A S, Ashby M F. Thermodynamics and Kinetics of Slip. Oxford, New York (USA): Pergamon Press, 1975.

    Google Scholar 

  39. Antolovich S D, Armstrong R W. Plastic strain localization in metals: origins and consequences. Prog Mater Sci 59: 1–160 (2014)

    Article  Google Scholar 

  40. Pollet J C, Burns S J. Thermally activated crack propagation—Theory. Int J Fract 13(5): 667–679 (1977)

    Article  Google Scholar 

  41. Zerilli F J, Armstrong R W. The effect of dislocation drag on the stress-strain behavior of F.C.C. metals. Acta Metall Mater 40(8): 1803–1808 (1992)

    Article  Google Scholar 

  42. Haward R N, Thackray G. The use of a mathematical model to describe isothermal stress-strain curves in glassy thermoplastics. Proc Roy Soc A Math Phys Eng Sci 302(1471): 453–472 (1968)

    Article  Google Scholar 

  43. Ward I M. Review: The yield behaviour of polymers. J Mater Sci 6(11): 1397–1417 (1971)

    Article  Google Scholar 

  44. Frisch D, Eyring H, Kincaid J F. Pressure and temperature effects on the viscosity of liquids. J Appl Phys 11(1): 75–80 (1940)

    Article  Google Scholar 

  45. Spikes H A, Zhang J. History, origins and prediction of elastohydrodynamic friction. Tribol Lett 56(1): 1–25 (2014)

    Article  Google Scholar 

  46. Ree T, Eyring H. Theory of non-Newtonian flow. I.Solid plastic system. J Appl Phys 26(7): 793–800 (1955)

    Article  MATH  Google Scholar 

  47. Ree F, Ree T, Eyring H. Relaxation theory of transport problems in condensed systems. Ind Eng Chem 50(7): 1036–1040 (1958)

    Article  MATH  Google Scholar 

  48. Maron S H, Pierce P E. Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. J Colloid Sci 11(1): 80–95 (1956)

    Article  Google Scholar 

  49. Kumar P, Khonsari M M, Bair S. Full EHL simulations using the actual Ree–Eyring model for shear-thinning lubricants. J Tribol 131(1): 011802 (2009)

    Article  Google Scholar 

  50. Smith F W. The effect of temperature in concentrated contact lubrication. ASLE Trans 5(1): 142–148 (1962)

    Article  Google Scholar 

  51. Plint M A. Traction in elastohydrodynamic contacts. Proc Inst Mech Eng 182(1): 300–306 (1967)

    Article  Google Scholar 

  52. Hirst W, Moore A J. Non-Newtonian behaviour in elastohydrodynamic lubrication. Proc Roy Soc A Math Phys Eng Sci 337(1608): 101–121 (1974)

    Article  Google Scholar 

  53. Hirst W, Moore A J. Elastohydrodynamic lubrication at high pressures. Proc Roy Soc A Math Phys Eng Sci 360(1702): 403–425 (1978)

    Article  Google Scholar 

  54. Hirst W, Moore A J. Elastohydrodynamic lubrication at high pressures II. Non-Newtonian behaviour. Proc Roy Soc A Math Phys Eng Sci 365(1723): 537–565 (1979)

    Article  Google Scholar 

  55. Hirst W, Moore A J. The effect of temperature on traction in elastohydrodynamic lubrication. Philos Trans Roy Soc A Math Phys Eng Sci 298(1438): 183–208 (1980)

    Article  Google Scholar 

  56. Tevaarwerk J, Johnson K L. A simple non-linear constitutive equation for elastohydrodynamic oil films. Wear 35(2): 345–356 (1975)

    Article  Google Scholar 

  57. Johnson K L, Tevaarwerk J L. Shear behaviour of elastohydrodynamic oil films. Proc Roy A Math Phys Eng Sci 356(1685): 215–236 (1977)

    Article  MATH  Google Scholar 

  58. Hirst W, Richmond J W. Traction in elastohydrodynamic contacts. Proc Inst Mech Eng Part C J Mech Eng Sci 202(2): 129–144 (1988)

    Article  Google Scholar 

  59. Evans C R, Johnson K L. The rheological properties of elastohydrodynamic lubricants. Proc Inst Mech Eng Part C J Mech Eng Sci 200(2): 303–312 (1986)

    Article  Google Scholar 

  60. Conry T F. Thermal effects on traction in EHD lubrication. J Lubr Technol 103(4): 533–538 (1981)

    Google Scholar 

  61. Muraki M. Molecular structure of synthetic hydrocarbon oils and their rheological properties governing traction characteristics. Tribol Int 20(6): 347–354 (1987)

    Article  Google Scholar 

  62. Sui P C, Sadeghi F. Non-Newtonian thermal elastohydrodynamic lubrication. J Tribol 113(2): 390–396 (1991)

    Article  Google Scholar 

  63. Muraki M, Dong D. Derivation of basic rheological parameters from experimental elastohydrodynamic lubrication traction curves of low-viscosity lubricants. Proc Inst Mech Eng Part J J Eng Sci 213(1): 53–61 (1999)

    Article  Google Scholar 

  64. Sharif K J, Morris S J, Evans H P, Snidle R W. Comparison of non-Newtonian EHL models in high sliding applications. Tribol Ser 39: 787–796 (2001)

    Article  Google Scholar 

  65. Sharif K J, Evans H P, Snidle R W, Newall J P. Modeling of film thickness and traction in a variable ratio traction drive rig. Trans J Tribol 126(1): 92–104 (2004)

    Article  Google Scholar 

  66. Bou-Chakra E, Cayer-Barrioz J, Mazuyer D, Jarnias F, Bouffet A. A non-Newtonian model based on Ree–Eyring theory and surface effect to predict friction in elastohydrodynamic lubrication. Tribol Int 43(9): 1674–1682 (2010)

    Article  Google Scholar 

  67. Gutzow I, Dobreva A, Schmelzer J. Rheology of non- Newtonian glass-forming melts: Part I Flow-stress relations. J Mater Sci 28(4): 890–900 (1993)

    Article  Google Scholar 

  68. Spikes H A. Comment on: Rheology of an ionic liquid with variable carreau exponent: A full picture by molecular simulation with experimental contribution, by Nicolas Voeltzel, Philippe Vergne, Nicolas Fillot, Nathalie Bouscharain, Laurent Joly, Tribology Letters (2016) 64: 25. Tribol Lett 65(2): 72 (2017)

    Article  Google Scholar 

  69. Ewen J P, Gattinoni G, Zhang J, Heyes D M, Spikes H A, Dini D. On the effect of confined fluid molecular structure on nonequilibrium phase behaviour and friction. Phys Chem Chem Phys 19(27): 17883–17894 (2017)

    Article  Google Scholar 

  70. Jadhao V, Robbins M O. Probing large viscosities in glassformers with nonequilibrium simulations. Proc Natl Acad Sci USA 114(30): 7952–7957 (2017)

    Article  Google Scholar 

  71. Voeltzel N, Vergne P, Fillot N, Bouscharain N, Joly L. Rheology of an ionic liquid with variable Carreau exponent: A full picture by molecular simulation with experimental contribution. Tribol Lett 64(2): 25 (2016)

    Article  Google Scholar 

  72. Voeltzel N, Vergne P, Fillot N, Bouscharain N, Joly L. Reply to the Comment on ‘Rheology of an ionic liquid with variable Carreau exponent: A full picture by molecular simulation with experimental contribution’. Tribol Lett 65(2): 73 (2017)

    Article  Google Scholar 

  73. Miller R, Wüstneck R, Krägel J, Kretzschmar G. Dilational and shear rheology of adsorption layers at liquid interfaces. Colloid Surf A 111(1–2): 75–118 (1996)

    Article  Google Scholar 

  74. Bartenev G M. On the theory of dry friction of rubber. Dokl Akad Nauk SSSR 96(6): 1161–1164 (1954)

    Google Scholar 

  75. Bartenev G M, El’kin A I. Friction properties of high elastic materials. Wear 8(1): 8–21 (1965)

    Article  Google Scholar 

  76. Schallamach A. A theory of dynamic rubber friction. Wear 6(5): 375–382 (1963)

    Article  Google Scholar 

  77. Bartenev G M, Lavrentjev V V, Konstantinova N A. The actual contact area and friction properties of elastomers under frictional contact with solid surfaces. Wear 18(6): 439–448 (1971)

    Article  Google Scholar 

  78. Schallamach A. How does rubber slide? Wear 17(4): 301–312 (1971)

    Article  Google Scholar 

  79. Steijn R P. Sliding experiments with polytetrafluoroethylene. ASLE Trans 11(3): 235–247 (1968)

    Article  Google Scholar 

  80. Chernyak Y B, Leonov A I. On the theory of the adhesive friction of elastomers. Wear 108(2): 105–138 (1986)

    Article  Google Scholar 

  81. Amuzu J K A, Briscoe B J, Tabor D. The shear properties of poly (N-alkyl methacrylates) in concentrated contacts. ASLE Trans 20(2): 152–160 (1977)

    Article  Google Scholar 

  82. Briscoe B J, Tabor D. Shear properties of thin polymeric films. J Adhes 9(2): 145–155 (1978)

    Article  Google Scholar 

  83. Bouhacina T, Aimé J, Gauthier S, Michel D, Heroguez V. Tribological behavior of a polymer grafted on silanized silica probed with a nanotip. Phys Rev B 56(12): 7694–7703 (1997)

    Article  Google Scholar 

  84. Briscoe B J, Evans D C B. The shear properties of Langmuir-Blodgett layers. Proc Roy Soc A Math Phys Eng Sci 380(1779): 389–407 (1982)

    Article  Google Scholar 

  85. Chugg K J, Chaudhri M M. Boundary lubrication and shear properties of thin solid films of dioctadecyl dimethyl ammonium chloride (TA 100). J Phys D Appl Phys 26(11): 1993–2000 (1993)

    Article  Google Scholar 

  86. Ingram M, Noles J, Watts R, Harris S, Spikes H A. Frictional properties of automatic transmission fluids: Part I-measurement of friction-sliding speed behaviour. Tribol Trans 54(1): 145–153 (2011)

    Article  Google Scholar 

  87. Campen S, Green J H, Lamb G D, Atkinson D, Spikes H. On the increase in boundary friction with sliding speed. Tribol Lett 48(2): 237–248 (2012)

    Article  Google Scholar 

  88. Drummond C, Israelachvili J, Richetti P. Friction between two weakly adhering boundary lubricated surfaces in water. Phys Rev E 67(6): 066110 (2003)

    Article  Google Scholar 

  89. Mazuyer D, Cayer-Barrioz J, Tonck A, Jarnias F. Friction dynamics of confined weakly adhering boundary layers. Langmuir 24(8): 3857–3866 (2008)

    Article  Google Scholar 

  90. Tománek D, Zhong W, Thomas H. Calculation of an atomically modulated friction force in atomic-force microscopy. Europhys Lett 15(8): 887–892 (1991)

    Article  Google Scholar 

  91. Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M, Meyer E, Güntherodt H J. Velocity dependence of atomic friction. Phys Rev Lett 84(6): 1172–1175 (2000)

    Article  Google Scholar 

  92. Müser M H. Nature of mechanical instabilities and their effect on kinetic friction. Phys Rev Lett 89(22): 224301 (2002)

    Article  Google Scholar 

  93. Riedo E, Gnecco E, Bennewitz R, Meyer E, Brune H. Interaction potential and hopping dynamics governing sliding friction. Phys Rev Lett 91(8): 084502 (2003)

    Article  Google Scholar 

  94. Glosli J N, McClelland G M. Molecular dynamics study of sliding friction of ordered organic monolayers. Phys Rev Lett 70(13): 1960–1963 (1993)

    Article  Google Scholar 

  95. Kong Y C, Tildesley D J, Alejandre J. The molecular dynamics simulation of boundary-layer lubrication. Mol Phys 92(1): 7–18 (1997)

    Article  Google Scholar 

  96. Chandross M, Grest G S, Stevens M J. Friction between alkylsilane monolayers: Molecular simulation of ordered monolayers. Langmuir 18(22): 8392–8399 (2002)

    Article  Google Scholar 

  97. Zhang L Z, Leng Y S, Jiang S Y. Tip-based hybrid simulation study of frictional properties of self-assembled monolayers: effects of chain length, terminal group, scan direction, and scan velocity. Langmuir 19(23): 9742–9747 (2003)

    Article  Google Scholar 

  98. Chen J Y, Ratera I, Park J Y, Salmeron M. Velocity dependence of friction and hydrogen bonding effects. Phys Rev Lett 96(23): 236102 (2006)

    Article  Google Scholar 

  99. Kapila V, Deymier P A, Raghavan S. Molecular dynamics simulations of friction between alkylsilane monolayers. Modell Simul Mater Sci Eng 14(2): 283–297 (2006)

    Article  Google Scholar 

  100. Ewen J P, Gattinoni C, Morgan N, Spikes H A, Dini D. Non-equilibrium molecular dynamics simulations of organic friction modifiers adsorbed on iron-oxide surfaces. iLangmuir 32(18): 4450–4463 (2016)

    Article  Google Scholar 

  101. Müser M. Velocity dependence of kinetic friction in the Prandtl–Tomlinson model. Phys Rev B 84(12): 125419 (2011)

    Article  Google Scholar 

  102. Faraday M. The decomposition of chloride of silver by hydrogen and by zinc. Quart J Liter Sci Arts 8: 374–376 (1820)

    Google Scholar 

  103. Ostwald W. The Fundamental Principles of Chemistry. Morse H W, trans. New York (USA): Longman Green, 1909.

    Google Scholar 

  104. Bell G. Models for the specific adhesion of cells to cells. Science 200(4342): 618–627 (1978)

    Article  Google Scholar 

  105. Beyer M K, Clausen-Schaumann H. Mechanochemistry: the mechanical activation of covalent bonds. Chem Rev 105(8): 2921–2948 (2005)

    Article  Google Scholar 

  106. Boldyrev V V. Mechanochemistry and mechanical activation of solids. Russ Chem Rev 75(3): 177–189 (2006)

    Article  Google Scholar 

  107. Kaupp G. Mechanochemistry: The varied applications of mechanical bond-breaking. Cryst Eng Comm 11(3): 388–403 (2009)

    Article  Google Scholar 

  108. James S L Adams C J, Bolm C, Braga D, Collier P, Friščić T, Grepioni F, Harris K D M, Hyett G, Jones W, et al. Mechanochemistry: Opportunities for new and cleaner synthesis. Chem Soc Rev 41(1): 413–447 (2012)

    Article  Google Scholar 

  109. Ribas-Arino J, Marx D. Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112(10): 5412–5487 (2012)

    Article  Google Scholar 

  110. Takacs L. The historical development of mechanochemistry. Chem Soc Rev 42(18): 7649–7659 (2013)

    Article  Google Scholar 

  111. Beldon P J, Fábián L, Stein R S, Thirumurugan A, Cheetham A K, Friščić T. Rapid room-temperature synthesis of zeolitic imidazolate frameworks by using mechanochemistry. Angew Chem Int Ed Engl 49(50): 9640–9643 (2010)

    Article  Google Scholar 

  112. Keller D, Bustamante C. The mechanochemistry of molecular motors. Biophys J 78(2): 541–556 (2000)

    Article  Google Scholar 

  113. Greenberg M J, Moore J R. The molecular basis of frictional loads in the in vitro motility assay with applications to the study of the loaded mechanochemistry of molecular motors. Cytoskeleton 67(5): 273–285 (2010)

    Article  Google Scholar 

  114. Lenhardt J M, Ogle J W, Ong M T, Choe R, Martinez T J, Craig S L. Reactive cross-talk between adjacent tensiontrapped transition states. J Am Chem Soc 133(10): 3222–3225 (2011)

    Article  Google Scholar 

  115. Craig S L. Mechanochemistry: A tour of force. Nature 487(7406): 176–177 (2012)

    Article  Google Scholar 

  116. Knothe Tate M L, Gunning P W, Sansalone V. Emergence of form from function—Mechanical engineering approaches to probe the role of stem cell mechanoadaptation in sealing cell fate. BioArchitecture 6(5): 85–103 (2016)

    Article  Google Scholar 

  117. Zhu C. Mechanochemitry: a molecular biomechanics view of mechanosensing. Ann Biomed Eng 42(2): 388–404 (2014)

    Article  Google Scholar 

  118. Black A L, Lenhardt J M, Craig S L. From molecular mechanochemistry to stress-responsive materials. J Mater Chem 21(6): 1655–1663 (2011)

    Article  Google Scholar 

  119. Brantley J N, Wiggins K M, Bielawski C W. Polymer mechanochemistry: the design and study of mechanophores. Polym Int 62(1): 2–12 (2013)

    Article  Google Scholar 

  120. De Simo M, Hilmer F B. Process for stabilizing polymers. U.S. Patent 2085525, Jun. 1937.

    Google Scholar 

  121. Morris W J, Schnurmann R. Mechanical degradation of large molecules. Nature 16(4072): 674 (1947)

    Article  Google Scholar 

  122. Marx N, Ponjavic A, Taylor R I, Spikes H A. Study of permanent shear thinning of VM polymer solutions. Tribol Lett 65(3): 106 (2017)

    Article  Google Scholar 

  123. Sohma J. Mechanochemistry of polymers. Prog Polym Sci 14(4): 451–596 (1989)

    Article  Google Scholar 

  124. De Gennes P G. Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. J Chem Phys 60(12): 5030–5042 (1974)

    Article  Google Scholar 

  125. Odell J A, Keller A, Rabin Y. Flow-induced scission of isolated macromolecules. J Chem Phys 88(6): 4022–4028 (1988)

    Article  Google Scholar 

  126. Odell J A, Muller A J, Narh K A, Keller A. Degradation of polymer solutions in extensional flows. Macromolecules 23(12): 3092–3103 (1990)

    Article  Google Scholar 

  127. Gosvami N N, Bares J A, Mangolini F, Konicek A R, Yablon D G, Carpick R W. Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348(6230): 102–106 (2015)

    Article  Google Scholar 

  128. Adams H L, Garvey M T, Ramasamy U S, Ye Z J, Martini A, Tysoe W T. Shear-induced mechanochemistry: pushing molecules around. J Phys Chem C 119(13): 7115–7123 (2015)

    Article  Google Scholar 

  129. Adams H, Miller B P, Kotvis P V, Furlong O J, Martini A, Tysoe W T. In situ measurements of boundary film formation pathways and kinetics: dimethyl and diethyl disulfide on copper. Tribol Lett 62(1): 12 (2016)

    Article  Google Scholar 

  130. Felts J R, Oyer A J, Hernández S C, Whitener Jr K E, Robinson J T, Walton S G, Sheehan P E. Direct mechanochemical cleavage of functional groups from graphene. Nat Commun 6: 6467 (2015)

    Article  Google Scholar 

  131. Yeon J, He X, Martini A, Kim S H. Mechanochemistry at solid surfaces: polymerization of adsorbed molecules by mechanical shear at tribological interfaces. ACS Appl Mater Interfaces 9(3): 3142–3148 (2017)

    Article  Google Scholar 

  132. He X, Kim S H. Mechanochemistry of physisorbed molecules at tribological interfaces: molecular structure dependence of tribochemical polymerization. Langmuir 33(11): 2717–2724 (2017)

    Article  Google Scholar 

  133. Brizmer V, Matta C, Nedelcu I, Morales-Espejel G E. The influence of tribolayer formation on tribological performance of rolling/sliding contacts. Tribol Lett 65(2): 57 (2017)

    Article  Google Scholar 

  134. Akchurin A, Bosman R. A deterministic stress-activated model for tribo-film growth and wear simulation. Tribol Lett 65(2): 59 (2017)

    Article  Google Scholar 

  135. Zhang J, Spikes H. On the mechanism of ZDDP antiwear film formation. Tribol Lett 63(2): 24 (2016)

    Article  Google Scholar 

  136. Dickinson J T, Park N S, Kim M W, Langford S C. A scanning force microscope study of a tribochemical system: stress-enhanced dissolution. Tribol Lett 3(1): 69–80 (1997)

    Article  Google Scholar 

  137. Kopta S, Salmeron M. The atomic scale origin of wear on mica and its contribution to friction. J Chem Phys 113(18): 8249–8252 (2000)

    Article  Google Scholar 

  138. Gotsmann B, Lantz M A. Atomistic wear in a single asperity sliding contact. Phys Rev Lett 101(12): 125501 (2008)

    Article  Google Scholar 

  139. Jacobs T D B, Carpick R W. Nanoscale wear as a stressassisted chemical reaction. Nat Nanotechnol 8(2): 108–112 (2013)

    Article  Google Scholar 

  140. Ewen J P, Gattinoni C, Morgan N, Spikes H A, Dini D. Nonequilibrium molecular dynamics simulations of organic friction modifiers adsorbed on iron oxide surfaces. Langmuir 32(18): 4450–4463 (2016)

    Article  Google Scholar 

  141. Mott N F. Slip at grain boundaries and grain growth in metals. Proc Phys Soc 60(4): 391–394 (1948)

    Article  MATH  Google Scholar 

  142. Gnecco E, Bennewitz R, Socoliuc A, Meyer E. Friction and wear on the atomic scale. Wear 254(9): 859–862 (2003)

    Article  Google Scholar 

  143. Konda S S M, Brantley J N, Bielawski C W, Makarov D E. Chemical reactions modulated by mechanical stress: extended Bell theory. J Chem Phys 135(16): 164103 (2011)

    Article  Google Scholar 

  144. Furlong O J, Manzi S J, Martini A, Tysoe W T. Influence of potential shape on constant-force atomic-scale sliding friction models. Tribol Lett 60(2): 21 (2015)

    Article  Google Scholar 

  145. Tysoe W. On stress-induced tribochemical reaction rates. Tribol Lett 65(2): 48 (2017)

    Article  Google Scholar 

  146. Zhang J, Tan A, Spikes H. Effect of base oil structure on elastohydrodynamic friction. Tribol Lett 65(1): 13 (2017)

    Article  Google Scholar 

  147. Galmiche B, Ponjavic A, Wong J S S. Flow measurements of a polyphenyl ether oil in an elastohydrodynamic contact. J Phys Condens Matter 28(13): 134005 (2016)

    Article  Google Scholar 

  148. Wool R S, Bretzlaff R Y, Li B H, Wang C H, Boyd R H. Infrared and Raman spectroscopy of stressed polyethylene. J Polym Sci Part B Polym Phys 24(5): 1039–1066 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Tribology Group, Department of Mechanical Engineering, Imperial College, London, SW72BX, UK

    Hugh Spikes

Authors
  1. Hugh Spikes
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Hugh Spikes.

Additional information

This article is published with open access at Springerlink.com

Hugh SPIKES. He graduated in natural sciences from the University of Cambridge in 1968 and received his PhD degree in mechanical engineering from the University of London in 1972. He joined the staff of the Mechanical Engineering Department at Imperial College in 1978, where in 1996 he became professor and head of the Tribology Group. He is currently a senior research fellow at Imperial College. His research areas cover all aspects of liquid lubrication, from hydrodynamic to boundary, with a particular interest in the influence of lubricant molecular composition on performance. He is a recipient of the ASME Mayo D Hersey Award, STLE International Award, and the Tribology Gold Medal.

Rights and permissions

Open Access: The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spikes, H. Stress-augmented thermal activation: Tribology feels the force. Friction 6, 1–31 (2018). https://doi.org/10.1007/s40544-018-0201-2

Download citation

  • Received: 22 September 2017

  • Accepted: 24 November 2017

  • Published: 07 February 2018

  • Issue Date: March 2018

  • DOI: https://doi.org/10.1007/s40544-018-0201-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • stress activation
  • stress augmented thermal activation
  • mechanochemistry
  • friction
  • EHD friction
  • wear
  • Eyring
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.