pp 1–12

Combined effect of the use of carbon fiber and seawater and the molecular structure on the tribological behavior of polymer materials

Open Access
Research Article


The combined effect of the use of carbon fiber and seawater and the molecular structure on the tribological behavior of various polymer materials under natural seawater lubrication was investigated. After the investigation, the wear morphology of the contact surface was observed by a laser scanning confocal microscope, and the texture of the wear scars and tracks were presented in 3D profiles. Moreover, the mechanism of mixed lubrication and wear resistance was analyzed. The results demonstrated that the friction coefficient of carbon fiber-reinforced polyetheretherketone (CFRPEEK) is the lowest and fluctuates at approximately 0.11. Moreover, the seven polymer materials in ascending order of friction coefficients are CFRPEEK, carbon fiber-reinforced polyamide-imide, polytetrafluoroethylene, polyoxymethylene, polyetheretherketone (PEEK), acrylonitrile butadiene styrene resin, and glass fiber–epoxy resin. More critically, the simultaneous incorporation of deposition, polymeric scrap, hydrophilic groups, and seawater resulted in a decrease in the friction and wear of polymer materials under seawater lubrication. This observation implies that a synergistic friction-reducing and wear-resistant effect exists between carbon fiber, seawater, and the molecular structure of PEEK. As a result, a highly effective polymer material was discovered, CFRPEEK, which has the lowest friction coefficient of 0.11 and lowest wear rate of 2 × 10–5 mm3·(N·m)−1 among the polymer materials; this validates the selection of dual friction pairs for seawater hydraulic components.


friction coefficient wear molecular structure polymer materials seawater lubrication 

Copyright information

© The author(s) 2017

Open Access The articles published in this journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.School of Mechanical EngineeringHangzhou Dianzi UniversityHangzhouChina
  2. 2.State Key Laboratory of Fluid Power and Mechatronic SystemsZhejiang UniversityHangzhouChina
  3. 3.College of Mechanical EngineeringYanshan UniversityQinhuangdaoChina

Personalised recommendations