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Abstract: The combined effect of the use of carbon fiber and seawater and the molecular structure on the 

tribological behavior of various polymer materials under natural seawater lubrication was investigated. After 

the investigation, the wear morphology of the contact surface was observed by a laser scanning confocal 

microscope, and the texture of the wear scars and tracks were presented in 3D profiles. Moreover, the 

mechanism of mixed lubrication and wear resistance was analyzed. The results demonstrated that the friction 

coefficient of carbon fiber-reinforced polyetheretherketone (CFRPEEK) is the lowest and fluctuates at approximately 

0.11. Moreover, the seven polymer materials in ascending order of friction coefficients are CFRPEEK, carbon 

fiber-reinforced polyamide-imide, polytetrafluoroethylene, polyoxymethylene, polyetheretherketone (PEEK), 

acrylonitrile butadiene styrene resin, and glass fiber–epoxy resin. More critically, the simultaneous incorporation 

of deposition, polymeric scrap, hydrophilic groups, and seawater resulted in a decrease in the friction and wear 

of polymer materials under seawater lubrication. This observation implies that a synergistic friction-reducing 

and wear-resistant effect exists between carbon fiber, seawater, and the molecular structure of PEEK. As a result, 

a highly effective polymer material was discovered, CFRPEEK, which has the lowest friction coefficient of 0.11 

and lowest wear rate of 2 × 10–5 mm3·(N·m)−1 among the polymer materials; this validates the selection of dual 

friction pairs for seawater hydraulic components. 
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1  Introduction 

With industrialization and population growth, the 

problems of resource shortage and environment 

pollution have intensified. Marine exploitation is the 

primary means of expanding human living space and 

facilitating the further development. Oceans, covering 

more than 71% of the earth’s surface, form an abundant 

water resource. Natural water has become the most 

popular hydraulic transmission system medium in 

place of oil. However, the physical and chemical 

properties of seawater, such as low lubricity and high 

causticity, result in numerous challenges. Consequently, 

research into the tribological performance of friction 

pairs in seawater environment is critical for seawater 

hydraulic components. 

Compared with metal, polymer materials exhibit 

higher performance in terms of self-lubrication, friction 

properties, and wear and corrosion resistance [1–3]. 

These advantages render them more adaptable to 

underwater environment. Therefore, a number of 

international scholars conducted numerous studies  

on the friction and wear characteristics of polymer 

materials. Chen et al. [4] prepared carbon fiber and 
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polyimide composites simultaneously reinforced with 

polytetrafluoroethylene (PTFE) and determined that 

the incorporation of polyimide (PI) and carbon fiber 

(CF) contributes toward significantly enhancing the 

wear resistance of PTFE. Dubey et al. [5] reported the 

effects of nanosized PTFE particles as a solid lubricant. 

The results demonstrated that PTFE particles sig-

nificantly enhance the weld load, as well as antiwear 

and friction reduction properties. Ye et al. [6] used 

interrupted microscopy measurements to investigate 

the evolution of transfer film development for an 

ultra-low-wear PTFE nanocomposite. 

Hedayati et al. [7] observed that semicrystalline 

pure polyetheretherketone (PEEK) coating exhibited 

higher hardness and lower adhesion strength, coefficient 

of friction, and wear rate than the amorphous one. 

Chen et al. [8] investigated the friction and wear 

behaviors of PEEK/PEI/PES alloys under dry sliding 

contact condition and reported that wear resistance of 

the alloys were considerably higher than those of pure 

polyetherimide (PEI) and polyarylethersulfone (PES). 

Tang et al. [9] researched on the tribological charac-

teristics of carbon fiber-reinforced polyetheretherketone 

(CFRPEEK) sliding on Si3N4 lubricated with water 

and determined that the sliding velocity has a 

higher effect on friction than pressure does. Rasheva 

et al. [10] reported that fiber orientation influences the 

mechanical performance and tribological properties of 

short-carbon fiber-reinforced PEEK materials. Chen 

et al. [11] investigated the tribological behaviors of 

CFRPEEK and observed that the incorporation of CF 

significantly enhances the wear resistance of PEEK 

under seawater lubrication. 

Pihtili [12] prepared glass fiber–epoxy resin (GFER) 

composites and determined that the weight loss of 

the woven GFER composite increased with increasing 

load and speed. Basavarajappa and Ellangovan [13] 

suggested that 5% silicon carbide and 5% graphite 

filled the glass–epoxy composites exhibited remarkably 

high wear resistance. Siddhartha and Gupta [14] 

observed chopped glass fiber-reinforced composites 

to exhibit higher performance than bidirectional glass 

fiber-reinforced composites under abrasive wear 

situations. Suresha et al. [15] reported that silicon 

carbide-filled glass-epoxy (G-E) composite exhibits 

higher resistance to slide wear compared to plain G-E 

composites. 

Difallah et al. [16] investigated the mechanical and 

tribological response of acrylonitrile butadiene styrene 

(ABS) polymer matrix filled with graphite powder 

and determined that the addition of graphite in ABS 

matrix lowers friction coefficient and wear. Huseyin 

et al. [17] researched on the tribological performance 

of industrial PAI in a cooling environment without 

air cooling and observed that the coefficient of friction 

marginally decreased and wear rates increased with 

increase in load and sliding speed. 

Mergler et al. [18] reported that the friction coefficient 

of polyoxymethylene (POM) sliding against stainless 

steel starts at a relatively low level of approximately 

0.2 and increases to higher values after 20 h of sliding 

owing to material transfer. Cho et al. [19] investigated 

the effect of surface texturing on the friction of POM 

and determined that the lowest friction coefficient 

was obtained with a 10% texturing density. Chaudri 

et al. [20] investigated the frictional performance   

of PBT + PTFE pin sliding against POM; the results 

indicated that the decrease in friction at higher loads 

is due to softening of the PBT pin by frictional heating. 

Although the tribological behavior of polymer 

materials was investigated, the studies mainly focused 

on dry friction and pure water lubrication. These 

studies are focused on material modification of fillers; 

however, the combined effects of seawater and mole-

cular structure of matrix and carbon fiber are seldom 

discussed. In the field of metal matrix composites, 

Bajwa et al. [21−23] investigated the wear and corrosion 

resistance properties of Ni-base composite and the 

microstructure of electrodeposited coatings under 

water lubrication and nano-enhanced lubrication. 

They reported that the nickel composite of nanosized 

alumina exhibits the maximum corrosion resistance.  

In the present study, tribological experiments of 

316L against PTFE, PEEK, CFRPEEK, GFER, ABS resin, 

carbon fiber-reinforced polyamide-imide (CFRPAI), 

and POM under natural seawater lubrication were 

conducted by using an MMU-5G ring-on-disk friction 

and wear tester. In this study, the wear morphology 

and texture of the wear scars and tracks on the contact 

surfaces were investigated, and the mechanisms of 

mixed lubrication and wear resistance were analyzed. 
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2 Experimental details 

2.1 Preparation of seawater and materials 

In this study, natural seawater sourced from China’s 

Bohai Bay was prepared [24]. The pH and salinity of 

the seawater are 7.2 and 2.983%, respectively. The  

test materials included PTFE, PEEK, GFER, ABS resin, 

CFRPAI, POM, and CFRPEEK. The main performance 

parameters are presented in Table 1. All the specimens 

were washed in an ultrasonic ethanol bath for 15 min 

and then air-dried to ensure the cleanliness of material’s 

surface.  

2.2 Test specimens 

The dimensions of the upper specimen ring and 

bottom specimen disk were Ф26 mm (outer diameter) × 

Ф20 mm (inner diameter) and Ф43 mm (diameter) × 

3 mm (height), respectively. The upper specimen ring 

and bottom specimen disk were fabricated from 

stainless steel 316L (the composition is presented in 

Table 2) and polymer, respectively. Stainless steel 

316L was selected as the upper specimen ring in the 

present research as it is likely that tribological materials 

are suitable for the marine environment. Stainless 

steel 316L has remarkably high wear and corrosion 

resistance [25, 26] and is widely used to fabricate the 

friction components of seawater pumps and motors 

[27, 28]. The properties of stainless steel 316L is 

presented in Table 3. 

2.3 Friction and wear tests 

The experiment used ring-disk sliding contact to 

investigate the friction and wear properties of each 

friction pair, as illustrated in Fig. 1. The upper specimen 

rotated around its own central axis under the set load 

and speed, while the bottom specimen was held 

stationary. The specimens were set in the box, which 

was filled completely with seawater in order to realize 

the continuous sliding of the friction pairs’ contact 

surfaces in seawater. The load is adjusted through 

manipulating the supply pressure of the hydraulic 

cylinder, and the rotational speed is adjusted through 

the frequency speed regulation system. The seawater 

temperature was measured by a temperature sensor 

installed beneath the contact surface of the bottom 

specimen. 

Table 1 Properties of polymer materials. 

Polymer  
materials 

Density  
(g/cm3) 

Water absorption after 
24 h immersion in water 

at 23 °C (%) 

Heat distortion 
temperature 

(°C) 

Coefficient of 
thermal expansion 

(10−5/°C) 

Tensile 
strength at 

23 °C (MPa) 

Bending 
strength at 

23 °C (MPa) 

Compressive 
strength 
(MPa) 

PTFE 2.2 0.01 120 10.3 28 18 11 

PEEK 1.3 0.5 163 4.7 100 163 118 

GFER 1.8 0.04 260 0.4 210 397 310 

ABS resin 1.04 0.2 180 2.88 55 80 65 

CFRPAI 1.42 0.33 250 2.5 152 235 221 

POM 1.41 0.22 124 0.23 98 283 110 

CFRPEEK 1.4 0.06 315 1.5 220 298 240 

Table 2 Chemical composition of 316L and 9Cr18Mo. 

Composition (wt%) 
Stainless steel 

C Si Mn P S Ni Cr Mo 

316L 0.03 1 2 0.035 0.03 10–14 16–18.5 2-3 

Table 3 Main performance parameters of 316L. 

Stainless 
steel 

Density 
(g/cm3) 

Modulus of 
elasticity (GPa) 

Brinell 
hardness 

Elongation
(%) 

Thermal 
conductance 
(W/(m·k) ) 

Coefficient of  
thermal expansion 

(10–6/°C) 

Tensile 
strength 
(MPa) 

Yield 
strength 
(MPa) 

316L 8.03 206 230 30 16.3 16 620 310 
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Fig. 1 Installation drawing of ring-on-disc configuration. 

The experiments were performed with a rotational 

speed of 100 r/min (0.12 m/s), load of 100 N, and 

period of 2 h and used seawater as the lubricant to 

simulate the actual working environment of the main 

dual friction pairs in the low-speed and high-torque 

hydraulic motor. All test parameters are displayed on 

the computer screen, and the computer recorded the 

curve of friction factor–time and temperature–time.  

Subsequent to the friction and wear test, the 

depth of the wear track on the bottom specimen was 

measured using a digital thickness gauge (YG141D) 

to an accuracy of 0.01 mm. The corresponding wear 

volume loss ΔV of the specimen was obtained by 

measuring the wear scar depth. Finally, the specific 

wear rate ω (mm3/(N·m)) was calculated from the 

volume loss by using the following equation: 

2π

V

RntF
 
                 (1) 

where ΔV is the wear volume loss (mm3), R is the mean 

radius of the upper specimens ring (m), n is the 

rotational velocity (r/min), t is the wear time (min), 

and F is the load (N).  

2.4 Observation of morphologies of worn surfaces 

The worn morphologies of the bottom specimens were 

observed using a laser scanning confocal microscope 

to understand the wear mechanism of PTFE, PEEK, 

GFER, ABS resin, CFRPAI, POM, and CFRPEEK under 

seawater lubrication. The texture of the wear scars 

and tracks were presented in 3D profiles to study  

its functional mechanisms further. The 3D profiles 

present the morphology of the contact surface, and   

the variations in surface topography were represented 

using various colors. 

3 Results 

3.1 Analysis of friction and wear of polymer  

materials 

Figures 2 and 3 illustrate the variation of the friction 

coefficient of 316L against several polymers, with 

the test time. All the upper specimens were of 316L, 

while bottom specimens were of PTFE, PEEK, GFER, 

ABS resin, CFRPAI, POM, and CFRPEEK. The upper 

specimens rotated at 100 r/min speed and under 100 N 

load, while the bottom specimens were held stationary. 

As illustrated in Fig. 2, the friction coefficient of 

316L–PTFE increased rapidly from 0.1 to 0.17 in 

10 min and then stabilized at approximately 0.17. 

After 80 min, it fluctuated around 0.15. The friction  

 

Fig. 2 Variation of the friction coefficient of 316L against PTFE, 
CFRPAI, CFRPEEK, and POM. 

 

Fig. 3 Variation of the friction coefficient of 316L against PEEK, 
GFER, ABS resin, and POM. 
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coefficient of 316L–PTFE is consistently higher than 

that of 316L–CFRPAI and 316L–CFRPEEK. The friction 

coefficient of 316L–POM fluctuated between 0.12 and 

0.18, which is marginally larger than that of 316L–PTFE. 

Meanwhile, the friction coefficients of 316L–CFRPAI 

and 316L–CFRPEEK fluctuated at approximately 0.1 

over 25 min. The two friction coefficients did not exhibit 

a running-in period. Then, the friction coefficient of 

316L–CFRPAI gradually increased to become higher 

than that of the pair whose bottom specimen was 

CFRPEEK, while the coefficient of 316L–CFRPEEK 

fluctuated at approximately 0.11. This is because of 

the molecular structure of PEEK, which has a higher 

proportion of hydrophilic groups than PAI. With the 

increase of the test time, the hydrophilic groups cause 

more water molecules to occupy the clearance. The 

flowing water better adapts to the action of external 

shearing force. 

As Fig. 3 illustrates, the friction coefficient of 316L– 

GFER fluctuated from 0.3 to 0.6 before 80 min and 

abruptly began to fluctuate from 0.3 to 0.9 when the 

friction coefficient of 316L–ABS resin fluctuated at 

approximately 0.25. The friction coefficient of 316L– 

PEEK increased gradually from 0.1 to 0.2 before 80 min 

and abruptly began fluctuating at approximately 0.3. 

The friction coefficient of 316L–POM fluctuated from 

0.12 to 0.18, which is marginally lower than that of 

316L–PEEK. Moreover, the fluctuation of the 316L–POM 

friction coefficient is the most regular and lowest in 

the four groups. 

By analyzing the variation of the friction coefficient 

of the 316L pairs against the various polymer materials, 

the comparison of the various dual friction pairs  

were obtained as follows: 316L–CFRPEEK < 316L– 

CFRPAI <316L–PTFE < 316L–POM < 316L–PEEK < 31

6L–ABS resin < 316L–GFER. Thus, it is determined that 

the friction coefficient of 316L–CFRPEEK is the lowest. 

The specific wear rates of the seven types of polymers 

were calculated using Eq. (1), as illustrated in Fig. 4, 

to investigate the wear extent of the specimens.  

Amongst all the specimens, CFRPEEK exhibited the 

lowest wear rate of 2 × 10−5 mm3·(N·m)−1, while PTFE 

exhibited the highest wear rate of 75.5 × 10−5 mm3·(N·m)−1. 

Moreover, the wear rate of CFRPEEK is approximately 

2.65% that of PTFE.  

The sequence of specific wear rate for the seven  

 

Fig. 4 The specific wear rates of the polymer materials. 

polymer materials is: CFRPEEK < POM < CFRPAI < 

GFER < PEEK < ABS resin < PTFE. This indicates that 

CFRPEEK exhibits reasonable wear resistance in the 

process of friction and wear in seawater. 

3.2 Analysis of worn surfaces of polymer materials 

Figure 5 presents the worn surface micrographs of the 

various polymer materials. For comparison, the original 

surface morphologies are also provided. When com-

pared with Fig. 5(a), Fig. 5(b) reveals that the worn 

surface of PTFE did not apparently exhibit scratch 

marks. However, particles of stainless steel 316L were 

observed on the worn surface, indicating that more 

extensive adhesive wear had occurred on the dual 

pair 316L–PTFE as a result of the wear test. Similar 

discovery was also reported in Refs. [29, 30]. Figure 5(d) 

illustrates that numerous small scratches appeared 

on the PEEK surface owing to wear, and the original 

morphology had disappeared. The Original GFER 

surface was grinded off and numerous small scratches 

on the worn surface (Fig. 5(f)). Moreover, the GFER 

surface was set with brown and white elements. The 

brown elements were dust particles from the worn 

GFER material, while the white elements were a few 

dust particles from the 316L. This observation indicates 

that the smearing and scratching phenomenon of 

adhesive wear exists on the surface of 316L–GFER as 

reported by Agrawal [31]. 

By comparing the original (Fig. 5(g)) with the worn 

ABS resin surface (Fig. 5(h)), it was determined that 

the surface had become smooth after the 316L–ABS 

resin wear test; however, numerous wide scratches 

were visible on the worn surface. White elements 

appeared on the ABS resin surface, which indicates 
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that falling debris was embedded into the contact 

surface. This phenomenon is similar to that reported 

in Ref. [32]. Numerous small scratches appeared on 

the CFRPAI surface, as illustrated in Fig. 5(j), which 

reveals that scuffing phenomenon had occurred. 

Meanwhile, the POM surface indicates the occurrence 

of the scratch phenomenon in adhesive wear (Fig. 5(l)). 

The surface wear is not uniform, and the scratches 

display unequal widths. A part of the original mor-

phology continues to be visible. In addition, the surface 

morphology of CFRPEEK observed in Figs. 5(m) and 

5(n) exhibits a more uniformly worn surface and to a 

marginal extent exhibits scratch phenomenon with 

thinner scratches. 

A laser microscope was used to scan the 3D 

morphology of the worn surfaces to analyze the friction 

and wear features of 316L against the various polymer 

materials and study their mechanism further. The 

result is presented in Fig. 6. 

Evidence of the plough-and-scratch phenomenon 

appears on the various types of polymer materials after 

wear, as illustrated in Fig. 6. Wear characteristics vary 

with the materials. The PTFE surface material is 

straightforwardly torn apart and forms the “prod” in 

the wear process owing to low strength and hardness 

of pure PTFE, as illustrated in Fig. 6(a). These prods 

repeatedly scrape the PTFE matrix, and this wear 

process increases the contact surface temperature. Then, 

plastic deformation appeared on the PTFE surface 

material and softened the matrix further, resulting in 

more extensive wear. The observation is consistent 

with those of few other researchers [33, 34]. Figure 6(b) 

illustrates that apparent grinded groove and “prods” 

appeared on the wear surface, which indicates that 

Fig. 5 Original and worn surface morphologies of the various polymer materials. 
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the wear resistance of PEEK is not adequate. 

When the bottom specimen is GFER, substantial 

“needles” appeared on the wear surface (Fig. 6(c)) 

because the bulges of the contact surface are cut off 

and the matrix wear debris and small particles are 

embedded into the surface during the process of wear. 

Numerous scratches and small grooves appeared on 

the contact surface (Fig. 6(d)); a number of “needles”, 

which are caused by the wear particles, are visible. 

The CFRPAI wear surface is smoother than that    

of several of the abovementioned the above several 

specimens (Fig. 6(e)). Although there are “needles” 

and scratches, the scratches are fewer and smaller. 

Figure 6(f) illustrates that no apparent “needles” 

appeared on the POM wear surface; however, a number 

of wider scratches appeared on the surface. 

A small-sized furrow or “needle” is visible on the 

3D morphology of the worn surface (Fig. 6(g)) when 

the bottom specimen is CFRPEEK. A mark of light 

wear is visible in the linear or lamellate wear area on 

the contact surface in the direction of friction. Moreover, 

the worn surface is smooth without extensive scratches 

or grooves. This observation indicates that CFRPEEK 

has reasonable wear resistance, anti-attrition, anti-drag, 

and self-lubrication properties. A similar discovery was 

also reported in Refs. [11, 35, 36]. 

3.3 Analysis of wear mechanism in polymer  

materials 

The analysis of the wear morphology reveals that the 

 

Fig. 6 3-D profiles of wear scars on the (a) PTFE, (b) PEEK, (c) GFER, (d) ABS resin, (e) CFRPAI, (f) POM, and (g) CFRPEEK surfaces
after friction experiment lubricated by seawater. 
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wear mechanisms of the selected polymer materials 

mainly include tiny plough, grinding, and plastic 

deformation, and the two or more phenomena may 

occur simultaneously. Therefore, the wear mechanisms 

of the seven types of polymers are varied.  

More extensive adhesive wear had occurred on the 

surface of PTFE after the wear test. Numerous small 

scratches and an apparent grinded groove appeared 

on the wear surface of PEEK, which indicates that the 

plough and grinding phenomenon occurred. Moreover, 

evidence of the smearing and scratching phenomenon 

of adhesive wear is visible on the GFER surface. The 

smearing phenomenon appears to have occurred on 

the worn surface, and numerous wide scratches and 

small grooves were visible. Although the scuffing 

phenomenon appears to have occurred on the worn 

surface of CFRPAI, the scratches are fewer and smaller. 

Evidence of the scratch phenomenon in adhesive wear 

also appears on the surface of POM, and the wear 

surface is not uniform. However, the CFRPEEK surface 

displays a more uniform worn surface and evidence 

of occurrence of scratch phenomenon to a marginal 

extent. 

In addition, it can be observed in Fig. 6 depicting 

the 3D wear that mechanical scratches were present 

on the contact surfaces of the polymer materials. 

Minute bulges on the rough surface of stainless 316L 

resemble relatively softer polymer materials, like 

machine surface of softer polymer materials micro 

cut by tools continuously. Moreover, floating debris 

that is suspended in the water box also results in the 

polymer materials of the bottom specimens in the 

experiment being cut during the process of friction 

and wear. 

4  Discussion 

4.1 Mixed lubricating effect 

In this study, the investigation of the tribological 

behavior of polymer materials is mainly for determining 

the appropriate counter materials for the port–plate 

pair of the low-speed high-torque water hydraulic 

motor. Therefore, the experimental model is similar 

to the port–plate and the rotor end surface in the low- 

speed high-torque water hydraulic motor. According 

to our previous study [37], the residual pressing force 

of the port plate pair is marginal. Under low load, it 

is convenient to form and maintain a seawater film 

between the stainless steel 316L and polymer materials. 

As illustrated in Fig. 7, the clearance between the 

sliding surfaces at the beginning is filled with adequate 

water. As the test progresses, the contact surfaces gain 

more severe damage because the seawater film breaks 

down. Thus, debris is crushed or broken and peeled 

off from the polymer materials matrix. Then, the 

sliding surfaces of the friction pair are immersed in a 

mixed solution of seawater and debris, as illustrated 

in Fig. 8. The debris of the polymer materials    

and seawater play a positive role, exhibiting a self- 

lubricating action and water lubrication in the process 

of friction and wear. 

In addition, seawater exhibits higher performance. 

In the opinion of Chen [8, 38], seawater exerts a better 

influence on the sliding surfaces as result of the 

deposition of Ca2+ and Mg2+ in the forms of CaCO3 

and Mg(OH)2, respectively, onto the surface. The 

lubricating fluid, including deposition, polymeric scrap, 

and seawater are the mixed suspension liquid, which 

exhibits superior lubrication as well as prevents direct 

contact between the frictional surfaces. It ultimately 

causes the decrease in friction and wear. 

 

Fig. 7 Model of the beneficial effect of seawater. 

 

Fig. 8 Model of the beneficial effect of debris and seawater. 
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4.2 Molecular structure effect of polymer materials 

Another feasible reason lies in the fact that the molecular 

structure of polymer materials promotes hydrodynamic 

lubrication [39], which further enhances the lubricating 

effect of the friction pair. Figure 8 illustrates the 

molecular structure of the various polymer materials. 

As illustrated in the figures, PEEK, GFER, PAI, and 

POM contained carbonyl groups (C=O) and ether 

linkage (−O−), which are combined with water molecules 

by hydrogen bond [40]. Therefore, water molecules 

aggregated on the surface under the influence of these 

hydrophilic groups of PEEK, GFER, PAI, and POM, 

forming a more stable lubrication film. Meanwhile, 

Figs. 9(a) and 9(d) do not reveal polar hydrophilic 

groups in the PTFE and ABS resin molecular structures. 

 

Fig. 9 Molecular structure of (a) PTFE, (b) PEEK, (c) GFER, 
(d) ABS resin, (e) PAI, and (f) POM. 

Therefore, the wear resistance of PTFE and ABS resin 

is lower than that of PEEK, GFER, PAI, and POM. It is 

consistent with the calculation results of specific wear 

rates, as illustrated in Fig. 4. 

4.3 The carbon fiber effect 

Experimental results demonstrate that polymer materials 

based on carbon fiber exhibit highly effective friction 

and wear characteristics under seawater lubrication. 

With the increment of wear time, the more severe wear 

of CFRPEEK and CFRPAI is adequately restricted 

because, according to the reports of Chen [4, 41], the 

exposed carbon fiber carried the main load. Moreover, 

CFRPEEK has lower friction coefficient and more 

effective wear resistance than CFRPAI owing to the 

molecular structure of PEEK, which has a larger number 

of hydrophilic groups than PAI. The use of carbon 

fiber and seawater and the molecular structure produce 

a synergistic effect on the enhancement of the wear 

resistance of the polymer materials, which substantiates 

the apparent decrease in friction and wear of CFRPEEK. 

5 Conclusions 

Friction and wear experiments of the dual friction 

pairs in the study are conducted under seawater 

lubrication. From the results of the experiments, the 

following conclusions are drawn: 

1. The friction and wear test results demonstrate 

that CFRPEEK has the lowest friction coefficient of 

0.11 among the seven types of polymers. Moreover, it 

exhibits the lowest wear rate of 2 × 10−5 mm3·(N·m)−1 

followed by POM, CFRPAI, GFER, PEEK, ABS resin, 

and PTFE. The wear rate of CFRPEEK is approximately 

2.65% that of PTFE.  

2. The lubricating fluid in the process of friction 

and wear, including deposition and polymeric scrap 

and seawater, is a mixed suspending liquid, which 

exhibits superior lubrication as well as prevents direct 

contact between the frictional surfaces. Therefore, it 

ultimately causes the decrease in friction and wear. 

3. The water molecules are aggregated on the surface 

by the hydrophilic groups of PEEK, GFER, PAI, and 

POM, forming a more stable lubrication film. On the 

contrary, the wear resistance of PTFE and ABS resin 

is lower than that of PEEK, GFER, PAI, and POM 
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owing to the absence of polar hydrophilic groups in 

the molecular structure of PTFE and ABS resin. 

4. CFRPEEK exhibits effective friction and wear 

characteristics as well as self-lubricating properties 

in seawater, as compared to the rest of the polymer 

materials. This result is attributed to the use of carbon 

fiber and seawater and the molecular structure of PEEK, 

which produces a synergistic effect to enhance the 

friction and wear characteristics of polymer materials. 
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