Advertisement

Friction

, Volume 1, Issue 2, pp 114–129 | Cite as

Recent advances in gecko adhesion and friction mechanisms and development of gecko-inspired dry adhesive surfaces

  • Ming Zhou
  • Noshir Pesika
  • Hongbo Zeng
  • Yu TianEmail author
  • Jacob Israelachvili
Open Access
Review article

Abstract

The remarkable ability of geckos to climb and run rapidly on walls and ceilings has recently received considerable interest from many researchers. Significant progress has been made in understanding the attachment and detachment mechanisms and the fabrication of articulated gecko-inspired adhesives and structured surfaces. This article reviews the direct experiments that have investigated the properties of gecko hierarchical structures, i.e., the feet, toes, setae, and spatulae, and the corresponding models to ascertain the mechanical principles involved. Included in this review are reports on gecko-inspired surfaces and structures with strong adhesion forces, high ratios of adhesion and friction forces, anisotropic hierarchical structures that give rise to directional adhesion and friction, and “intelligent” attachment and detachment motions.

Keywords

gecko feet surfaces setae spatulae anisotropic dry adhesion and friction articulated motion 

References

  1. [1]
    Autumn K, Hsieh S T, Dudeket D M, Chen J, Chitaphan C, Full R J. Dynamics of geckos running vertically. J Exp Biol209: 260–272 (2006)Google Scholar
  2. [2]
    Hansen W, Autumn K. Evidence for self-cleaning in gecko setae. P Natl Acad Sci USA102: 385–389 (2005)Google Scholar
  3. [3]
    Cutkosky M R. Gecko-like robot scampers up the wall. New Sci2252: 29–33 (2006)Google Scholar
  4. [4]
    Menon C, Murphy M, Sitti M. Gecko inspired surface climbing robots. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Shenyang, China, 2004: 431–436.Google Scholar
  5. [5]
    Ruibal R, Ernst V. The structure of the digital setae of lizards. J Morphol117: 271–294 (1965)Google Scholar
  6. [6]
    Russell A P, Bauer A M, Laroiya R. Morphological correlates of the secondarily symmetrical Pes of Gekkotan lizards. J Zool241: 767–790 (1997)Google Scholar
  7. [7]
    Autumn K. How gecko toes stick—The powerful, fantastic adhesive used by geckos is made of nanoscale hairs that engage tiny forces, inspiring envy among human imitators. Am Sci94: 124–132 (2006)Google Scholar
  8. [8]
    Autumn K, Peattie A M. Mechanisms of adhesion in geckos. Integr Comp Biol42: 1081–1090 (2002)Google Scholar
  9. [9]
    Autumn K, Sitti M, Peattie A, Liang A, Hansen W, Sponberg S, Kenny T, Fearing R, Israelachvili J, Full R. Evidence for van der Waals adhesion in gecko setae. P Natl Acad Sci USA99: 12252–12256 (2002)Google Scholar
  10. [10]
    Sun W X, Neuzil P, Kustandi T S, Oh S, Samper V D. The nature of the gecko lizard adhesive force. Biophys J89: L14–L17 (2005)Google Scholar
  11. [11]
    Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb S N, Arzt E. Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. P Natl Acad Sci Usa102: 16293–16296 (2005)Google Scholar
  12. [12]
    Prowse M S, Wilkinson M, Puthoff J B, Mayer G, Autumn K. Effects of humidity on the mechanical properties of gecko setae. Acta Biomater7: 733–738 (2011)Google Scholar
  13. [13]
    Kim T W, Bhushan B. The adhesion model considering capillarity for gecko attachment system. J R Soc Interface5: 319–327 (2008)Google Scholar
  14. [14]
    Niederegger S, Gorb S N. Friction and adhesion in the tarsal and metatarsal scopulae of spiders. J Comp Physiol A192: 1223–1232 (2006)Google Scholar
  15. [15]
    Niewiarowski P H, Lopez S, Ge L H, Hagan E, Dhinojwala A. Sticky gecko feet: The role of temperature and humidity. PLoS One3: e2192 (2008)Google Scholar
  16. [16]
    Pesika N S, Zeng H B, Kristiansen K, Zhao B, Tian Y, Autumn K, Israelachvili J. Gecko adhesion pad: A smart surface? J Phys-Condens Mat21: 464132 (2009).Google Scholar
  17. [17]
    Puthoff J B, Prowse M S, Wilkinson M, Autumn K. Changes in materials properties explain the effects of humidity on gecko adhesion. J Exp Biol213: 3699–3704 (2010)Google Scholar
  18. [18]
    Autumn K, Liang Y A, Hsieh S T, Zesch W, Chan WP, Kenny T W, Fearing R, Full R J. Adhesive force of a single gecko foot-hair. Nature405: 681–685 (2000)Google Scholar
  19. [19]
    Huber G, Gorb S, Spolenak R, Arzt E. Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett1: 2–4 (2005)Google Scholar
  20. [20]
    Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M. Frictional adhesion: A new angle on gecko attachment. J Exp Biol209: 3569–3579 (2006)Google Scholar
  21. [21]
    Zhao B X, Pesika N, Rosenberg K, Tian Y, Zeng H, McGuiggan P, Autumn K, Israelachvili J. Adhesion and friction force coupling of gecko setal arrays: Implications for structured adhesive surfaces. Langmuir24: 1517–1524 (2008)Google Scholar
  22. [22]
    Wan J, Tian Y, Zhou M, Zhang X J, Meng Y G. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Phys Sin61: 016202 (2012)Google Scholar
  23. [23]
    Johnson K L, Kendall K, Roberts A D. Surface energy and contact of elastic solids. Proc R. Soc London Ser A324: 301–313 (1971)Google Scholar
  24. [24]
    Arzt E, Gorb S, Spolenak R. From micro to nano contacts in biological attachment devices. P Natl Acad Sci USA100: 10603–10606 (2003)Google Scholar
  25. [25]
    Peressadko A, Gorb S N. When less is more: Experimental evidence for tenacity enhancement by division of contact area. J Adhes80: 247–261 (2004)Google Scholar
  26. [26]
    Peattie A M, Full R J. Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. P Natl Acad Sci USA104: 18595–18600 (2007)Google Scholar
  27. [27]
    Autumn K, Hansen W. Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J Comp Physiol A193: 1205–1212 (2006)Google Scholar
  28. [28]
    Tang T, Hui C Y, Glassmaker N J. Can a fibrillar interface be stronger and tougher than a non-fibrillar one? J R Soc Interface2: 505–516 (2005)Google Scholar
  29. [29]
    Bonser R. The Young’s modulus of ostrich claw keratin. J Mater Sci Lett19: 1039–1040 (2000)Google Scholar
  30. [30]
    Peattie A M, Majidi C, Corder A B, Full R J. Similar elastic modulus of setal keratin for two species of gecko. Integr Comp Biol461: E109 (2006)Google Scholar
  31. [31]
    Peattie A M, Majidi C, Corder A, Full R J. Ancestrally high elastic modulus of gecko setal beta-keratin. J R Soc Interface4: 1071–1076 (2007)Google Scholar
  32. [32]
    Autumn K, Majidi C, Groff R E, Dittmore A, Fearing R. Effective elastice modulus of isolated gecko setal arrays. J Exp Biol209: 3558–3568 (2006)Google Scholar
  33. [33]
    Persson B. On the mechanism of adhesion in biological systems. J Chem Phys118: 7614–7621 (2003)Google Scholar
  34. [34]
    Schubert B, Majidi C, Groff R E, Baek S, Bush B, Maboudian R, Fearing R S. Towards friction and adhesion from high modulus microfiberarrays. J Adhes Sci Technol21: 1297–1315 (2007)Google Scholar
  35. [35]
    Kwak J S, Kim T W. A review of adhesion and friction models for gecko feet. Int J Precis Eng Manuf11: 171–186 (2010)Google Scholar
  36. [36]
    Campolo D, Jones S, Fearing R S. Fabrication of gecko foot-hair like nano structures and adhesion to random rough surfaces. In Proceedings of 2003 IEEE International Conference on Nanotechnology, SAN FRANCISCO, USA, 2003: 856–859.Google Scholar
  37. [37]
    Aksak B, Murphy M P, Sitti M. Adhesion of biologically inspired vertical and angled polymer microfiber arrays. Langmuir23: 3322–3332 (2007)Google Scholar
  38. [38]
    Reyes M P, Fearing R S. Macromodel for the mechanics of gecko hair adhesion. In Proceedings of 2008 IEEE International Conference on Robotics and Automation, Pasadena, 2008: 1602–1607.Google Scholar
  39. [39]
    Jagota A, Bennison S J. Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol42: 1140–1145 (2002)Google Scholar
  40. [40]
    Gao H J, Wang X, Yao H M, Gorb S, Arzt E. Mechanics of hierarchical adhesion structures of geckos. Mech Mater37: 275–285 (2005)Google Scholar
  41. [41]
    Yao H, Gao H. Mechanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures of gecko. J Mech Phys Solids54: 1120–1146 (2006)Google Scholar
  42. [42]
    Yao H, Gao H. Bio-inspired mechanics of bottom-up designed hierarchical materials: Robust and releasable adhesion systems of gecko. Bull Pol Acad Sci-Tech55: 141–150 (2007)Google Scholar
  43. [43]
    Bhushan B, Peressadko A G, Kim T W. Adhesion analysis of two-level hierarchical morphology in natural attachment systems for ‘smart adhesion’. J Adhes Sci Technol20: 1475–1491 (2006)Google Scholar
  44. [44]
    Kim T W, Bhushan B. Adhesion analysis of multi-level hierarchical attachment system contacting with a rough surface. J Adhes Sci Technol21: 1–20 (2007)Google Scholar
  45. [45]
    Kim T W, Bhushan B. Effect of stiffness of multi-level hierarchical attachment system on adhesion enhancement. Ultramicroscopy107: 902–912 (2007)Google Scholar
  46. [46]
    Zeng H B, Pesika N, Tian Y, Zhao B, Chen Y, Tirrell M, Turner K L, Israelachvili J N. Frictional adhesion of patterned surfaces and implications for gecko and biomimetic systems. Langmuir25: 7486–7495 (2009)Google Scholar
  47. [47]
    Shah G J, Sitti M. Modeling and design of biomimetic adhesives inspired by gecko foot-hairs. In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Shenyang, 2004: 873–878.Google Scholar
  48. [48]
    Peressadko A G, Gorb S N. Surface profile and friction force generated by insects. In Proceedings of the 1st International Industrial Conference Bionik 2004, Hannover, 2004: 257–261.Google Scholar
  49. [49]
    Huber G, Gorb S N, Hosoda N, Spolenak R, Arzt E. Influence of surface roughness on gecko adhesion. Acta Biomater3: 607–610 (2007)Google Scholar
  50. [50]
    Kendall K. Thin-film peeling-The elastic term. J Phys D Appl Phys8: 1449–1452 (1975)Google Scholar
  51. [51]
    Peng Z L, Chen S H, Soh A K. Peeling behavior of a bio-inspired nano-film on a substrate. Int J Solids Struct47: 1952–1960 (2010)Google Scholar
  52. [52]
    Pesika N S, Tian Y, Zhao B X, Rosenberg K, Zeng H, McGuiggan P, Autumn K, Israelachvili J N. Peel-zone model of tape peeling based on the gecko adhesive system. J Adhes83: 383–401 (2007)Google Scholar
  53. [53]
    Zhang L, Wang J. A generalized cohesive zone model of the peel test for pressure-sensitive adhesives. Int J Adhes Adhes29: 217–224 (2009)Google Scholar
  54. [54]
    Lin Y Y, Hui C Y, Wang Y C. Modeling the failure of an adhesive layer in a peel test. J Polym Sci Pol Phys40: 2277–2291 (2002)Google Scholar
  55. [55]
    Zhou M, Tian Y, Pesika N, Zeng H, Wan J, Meng Y G, Wen S Z. The extended peel zone model: Effect of peeling velocity. J Adhes87: 1045–1058 (2011)Google Scholar
  56. [56]
    Tian Y, Pesika N, Zeng H B, Rosenberg K, Zhao B, McGuiggan P, Autumn K, Israelachvili J. Adhesion and friction in gecko toe attachment and detachment. P Natl Acad Sci USA103: 19320–19325 (2006)Google Scholar
  57. [57]
    Endlein T, Ji A, Samuel D, Yao N, Wang Z, Barnes W P, Federle W, Kappl M, Dai Z D. Sticking like sticky tape: Tree frogs use friction forces to enhance attachment on overhanging surfaces. J Roy Soc Interface10: 20120838 (2011)Google Scholar
  58. [58]
    Fuller K, Tabor D. Effect of surface-roughness on adhesion of elastic solids. P Roy Soc Lond A Mat345: 327–342 (1975)Google Scholar
  59. [59]
    Briggs G, Briscoe B J. Effect of surface-topography on adhesion of elastic solids. J Phys D Appl Phys10: 2453–2466 (1977)Google Scholar
  60. [60]
    Persson B, Gorb S. The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys119: 11437–11444 (2003)Google Scholar
  61. [61]
    Peng Z L, Chen S H. Effects of surface roughness and film thickness on the adhesion of a bio-inspired nanofilm. Phys Rev E83: 051915 (2011)Google Scholar
  62. [62]
    Sponberg S, Hansen W, Peattie A, Autumn K. Dynamics of isolated gecko setal arrays. Am Zool41: 1594–1594 (2001)Google Scholar
  63. [63]
    Schargott M, Popov V L, Gorb S. Spring model of biological attachment pads. J Theor Biol243: 48–53 (2006)MathSciNetGoogle Scholar
  64. [64]
    Wang Z Y, Gu W H, Wu Q, Ji A, Dai Z D. Morphology and reaction force of toes of geckos freely moving on ceilings and walls. Sci China Technol Sci53: 1688–1693 (2010)Google Scholar
  65. [65]
    Zhao B X, Pesika N, Zeng H B, Wei W, Chen Y, Autumn K, Turner K, Israelachvili J. Role of tilted adhesion fibrils (setae) in the adhesion and locomotion of gecko-like systems. J Phys Chem B113: 3615–3621 (2009)Google Scholar
  66. [66]
    Wan J, Tian Y, Zhou M, Zhang X-J, Meng Y-G. Experimental research of load effect on the anisotropic friction behaviors of gecko seta array. Acta Phys Sin61: 016202 (2012)Google Scholar
  67. [67]
    Hill G, Soto D, Peattie A, Full R J, Kenny T W. Orientation angle and the adhesion of single gecko setae. J Roy Soc Interface8: 926–933 (2011)Google Scholar
  68. [68]
    Pesika N, Gravish N, Wikinson M, Zhao B, Zeng H, Tian Y, Israelachvili J, Autumn K. The crowding model as a tool to understand and fabricate gecko-inspired dry adhesives. J Adhes85: 512–525 (2009)Google Scholar
  69. [69]
    Filippov A, Popov V L, Gorb S N. Shear induced adhesion: Contact mechanics of biological spatula-like attachment devices. J Theor Biol276: 126–131 (2011)MathSciNetGoogle Scholar
  70. [70]
    Kumar A, Hui C Y. Numerical study of shearing of a microfibre during friction testing of a microfibre array. P Roy Soc Lond A Mat467: 1372–1389 (2011)Google Scholar
  71. [71]
    Cheng Q H, Chen B, Gao H J, Zhang Y W. Sliding-induced non-uniform pretension governs robust and reversible adhesion: A revisit of adhesion mechanisms of geckos. J Roy Soc Interface9: 283–291 (2012)Google Scholar
  72. [72]
    Chen B, Wu P D, Gao H J. Pre-tension generates strongly reversible adhesion of a spatula pad On substrate. J Roy Soc Interface6: 529–537 (2009)Google Scholar
  73. [73]
    Boesel L F, Greiner C, Arzt E, del Campo A. Gecko-inspired surfaces: A path to strong and reversible dry adhesives. Adv Mater22: 2125–2137 (2010)Google Scholar
  74. [74]
    Gorb S, Varenberg M, Peressadko A, Tuma J. Biomimetic mushroom-shaped fibrillar adhesive microstructure. J Roy Soc Interface4: 271–275 (2007)Google Scholar
  75. [75]
    Stork N E. Experimental-analysis of adhesion of chrysolinapolita (chrysomelidae, coleoptera) on a variety of surfaces. J Exp Biol88: 91–107 (1980)Google Scholar
  76. [76]
    Chan E P, Greiner C, Arzt E, Crosby A J. Designing model systems for enhanced adhesion. Mrs Bull32: 496–503 (2007)Google Scholar
  77. [77]
    Kroner E, Arzt E. What we can learn from geckos. Nachr Chem57: 137–139 (2009)Google Scholar
  78. [78]
    Varenberg M, Peressadko A, Gorb S, Arzt E. Effect of real contact geometry on adhesion. Appl Phys Lett89: 121905 (2006)Google Scholar
  79. [79]
    Gao H J, Ji B H, Jager I L, Arzt E, Fratzl P. Materials become insensitive to flaws at nanoscale: Lessons from nature. P Natl Acad Sci USA100: 5597–5600 (2003)Google Scholar
  80. [80]
    Varenberg M, Murarash B, Kligerman Y, Gorb S N. Geometry-controlled adhesion: Revisiting the contact splitting hypothesis. Appl Phys A-Mater103: 933–938 (2011)Google Scholar
  81. [81]
    Spolenak R, Gorb S, Gao H J, Arzt E. Effects of contact shape on the scaling of biological attachments. P Roy Soc Lond A Mat461: 305–319 (2005)Google Scholar
  82. [82]
    Gorb S N, Varenberg M. Mushroom-shaped geometry of contact elements in biological adhesive systems. J Adhes Sci Technol21: 1175–1183 (2007)Google Scholar
  83. [83]
    Varenberg M, Gorb S. Close-up of mushroom-shaped fibrillar adhesive microstructure: Contact element behaviour. J Roy Soc Interface5: 785–789 (2008)Google Scholar
  84. [84]
    Creton C, Gorb S. Sticky feet: From animals to materials. Mrs Bull32: 466–472 (2007)Google Scholar
  85. [85]
    Gorb S N. Biological attachment devices: Exploring nature’s diversity for biomimetics. Philos T R Soc A366: 1557–1574 (2008)Google Scholar
  86. [86]
    Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Zhukov A A, Shapoval S Y. Microfabricated adhesive mimicking gecko foot-hair. Nat Mater2: 461–463 (2003)Google Scholar
  87. [87]
    Jeong H E, Lee J K, Kim H N, Moon S H, Suh K Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. P Natl Acad Sci USA106: 5639–5644 (2009)Google Scholar
  88. [88]
    Parness A, Soto D, Esparza N, Gravish N, Wilkinson M, Autumn K, Cutkosky M. A microfabricated wedge-shaped adhesive array displaying gecko-like dynamic adhesion, directionality and long lifetime. J Roy Soc Interface6: 1223–1232 (2009)Google Scholar
  89. [89]
    Yoon H, Jeong H E, Kim T I, Kang T J Author Vitae, Tahk DAuthor Vitae, Char K, Author VSuh K Y. Adhesion hysteresis of janus nanopillars fabricated by nanomolding and oblique metal deposition. Nano Today4: 385–392 (2009)Google Scholar
  90. [90]
    Sitti M, Fearing R S. Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J Adhes Sci Technol17: 1055–1073 (2003)Google Scholar
  91. [91]
    Glassmaker N J, Jagota A, Hui C Y, Kim J. Design of biomimetic fibrillar interfaces: 1. Making contact. J Roy Soc Interface1: 23–33 (2004)Google Scholar
  92. [92]
    Hui C Y, Jagota A, Lin Y Y, Kramer E J. Constraints on microcontact printing imposed by stamp deformation. Langmuir18: 1394–1407 (2002)Google Scholar
  93. [93]
    Spolenak R, Gorb S, Arzt E. Adhesion design maps for bioinspired attachment systems. Acta Biomater1: 5–13 (2005)Google Scholar
  94. [94]
    Greiner C, Spolenak R, Arzt E. Adhesion design maps for fibrillar adhesives: The effect of shape. Acta Biomaterialia5: 597–606 (2009)Google Scholar
  95. [95]
    Zhou M, Pesika N, Zeng H, Wan J, Zhang X, Meng Y, Wen S, Tian Y. Design of gecko-inspired fibrillar surfaces with strong attachment and easy-removal properties: A numerical analysis of peel-zone. J Roy Soc Interface9: 2424–2436 (2012)Google Scholar
  96. [96]
    Crosby A J, Hageman M, Duncan A. Controlling polymer adhesion with “pancakes”. Langmuir21: 11738–11743 (2005)Google Scholar
  97. [97]
    Campo D A, Greiner C. Su-8: A photoresist for high-aspectratio and 3D submicron lithography. J Micromech Microeng17: R81–R95 (2007)Google Scholar
  98. [98]
    Lamblet M, Verneuil E, Vilmin T, Buguin A, Silberzan P, Léger L. Adhesion enhancement through micropatterning at polydimethylsiloxane-acrylic adhesive interfaces. Langmuir23: 6966–6974 (2007)Google Scholar
  99. [99]
    Greiner C, Campo D A, Arzt E. Adhesion of bioinspired micropatterned surfaces: Effects of pillar radius, aspect ratio, and preload. Langmuir23: 3495–3502 (2007)Google Scholar
  100. [100]
    Lu G W, Hong W J, Tong L, Bai H, Wei Y, Shi G. Drying enhanced adhesion of polythiophene nanotubule arrays on smooth surfaces. ACS Nano2: 2342–2348 (2008)Google Scholar
  101. [101]
    Lee J, Fearing R S. Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. Langmuir24: 10587–10591 (2008)Google Scholar
  102. [102]
    Campo D A, Greiner C, Arzt E. Contact shape controls adhesion of bioinspired fibrillar surfaces. Langmuir23: 10235–10243 (2007)Google Scholar
  103. [103]
    Campo D A, Greiner C, Alvarez I, Arzt E. Patterned surfaces with pillars with controlled 3D tip geometry mimicking bio-attachment devices. Adv Mater19: 1973–1977 (2007)Google Scholar
  104. [104]
    Aksak B, Murphy M P, Sitti M. Gecko inspired microfibrillar adhesives for wall climbing robots on micro/nanoscale rough surfaces. In Proceedings of 2008 IEEE International Conference on Robotics and Automation, Pasadena, 2008: 3058–3063.Google Scholar
  105. [105]
    Lee D Y, Lee D H, Lee S G, Cho K. Hierarchical geckoinspired nanohairs with a high aspect ratio induced by nanoyielding. Soft Matter8: 4905–4910 (2012)MathSciNetGoogle Scholar
  106. [106]
    Davies J, Haq S, Hawke T, Sargent J P. A practical approach to the development of a synthetic gecko tape. Int J Adhes Adhes29: 380–390 (2009)Google Scholar
  107. [107]
    Haefliger D, Boisen A. Three-dimensional microfabrication in negative resist using printed masks. J Micromech Microeng16: 951–957 (2006)Google Scholar
  108. [108]
    Sameoto D, Menon C. Direct molding of dry adhesives with anisotropic peel strength using an offset lift-off photoresist mold. J Micromech Microeng19: 1–5 (2009)Google Scholar
  109. [109]
    Kim S, Sitti M. Biologically inspired polymer microfibers with spatulate tips as repeatable fibrillar adhesives. Appl Phys Lett89: 261911 (2006)Google Scholar
  110. [110]
    Jin K, Tian Y, Erickson J S, Puthoff J, Autumn K, Pesika N S. Design and fabrication of gecko-inspired adhesives. Langmuir28: 5737–5742 (2012)Google Scholar
  111. [111]
    Sameoto D, Menon C. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives. J Micromech Microeng20: 115037 (2010)Google Scholar
  112. [112]
    Krahn J, Sameoto D, Menon C. Controllable biomimetic adhesion using embedded phase change material. Smart Mater Struct20: 015014 (2011)Google Scholar
  113. [113]
    Kim S, Sitti M, Hui C Y, Long R, Jagota A. Effect of backing layer thickness on adhesion of single-level elastomer fiber arrays. Appl Phys Lett91: 161905 (2007)Google Scholar
  114. [114]
    Kustandi T S, Samper V D, Yi D K, Ng W S, Neuzil P, Sun W. Self-assembled nanoparticles based fabrication of gecko foot-hair-inspired polymer nanofibers. Adv Funct Mater17: 2211–2218 (2007)Google Scholar
  115. [115]
    Yu J, Chary S, Das S, Tamelier J, Pesika N S, Turner K L, Israelachvili J N. Gecko-inspired dry adhesive for robotic applications. Adv Funct Mater21: 3010–3018 (2011)Google Scholar
  116. [116]
    Reddy S, Arzt E, Campo D A. Bioinspired surfaces with switchable adhesion. Adv Mater19: 3833–3837 (2007)Google Scholar
  117. [117]
    Sato H, Houshi Y, Shoji S. Three-dimensional micro-structures consisting of high aspect ratio inclined micro-pillars fabricated by simple photolithography. Microsyst Technol10: 440–443 (2004)Google Scholar
  118. [118]
    Kustandi T S, Samper V D, Ng W S, Chong A S, Gao H. Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template. J Micromech Microeng17: N75–N81 (2007)Google Scholar
  119. [119]
    Greiner C, Arzt E, Campo D A. Hierarchical gecko-like adhesives. Adv Mater21: 479–482 (2009)Google Scholar
  120. [120]
    Murphy M P, Kim S, Sitti M. Enhanced adhesion by gecko-inspired hierarchical fibrillar adhesives. ACS Appl Mater Inter1: 849–855 (2009)Google Scholar
  121. [121]
    Bhushan B, Lee H. Fabrication and characterization of multi-level hierarchical surfaces. Faraday Discuss156: 235–241 (2012)Google Scholar
  122. [122]
    Lee J, Bush B, Maboudian R, Fearing R S. Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. Langmuir25: 12449–12453 (2009)Google Scholar
  123. [123]
    Sameoto D, Li Y S, Menon C. Multi-scale compliant foot designs and fabrication for use with a spider-inspired climbing robot. J Bionic Eng5: 189–196 (2008)Google Scholar
  124. [124]
    Northen M T, Greiner C, Arzt E, Turner K L. A geckoinspired reversible adhesive. Adv Mater20: 3905–3909 (2008)Google Scholar
  125. [125]
    Tian Y, Wan J, Pesika N, Zhou M. Bridging nanocontacts to macroscale gecko adhesion by sliding soft lamellar skin supported setal array. Sci Rep3: 1382 (2013)Google Scholar
  126. [126]
    Menon C, Murphy M, Sitti M. Gecko inspired surface climbing robots. In Proceedings of 2008 IEEE International Conference on Robotics and Automation, Pasadena, 2004: 3058–3063.Google Scholar
  127. [127]
    Sitti M, Fearing R S. Nanomolding based fabrication of synthetic gecko foot-hairs. In Proceedings of the 2002 2nd IEE Conference on Nanotechnology, Washington, 2002: 137–140.Google Scholar
  128. [128]
    Lee J, Fearing R S. Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. Langmuir24: 10587–10591 (2008)Google Scholar
  129. [129]
    Dai Z D, Yu M, Gorb S. Adhesion characteristics of polyurethane for bionic hairy foot. J Intel Mat Syst Str17: 737–741 (2006)Google Scholar
  130. [130]
    Lee H, Lee B P, Messersmith P B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature448: 334–338 (2007)Google Scholar
  131. [131]
    Ajayan P M, Zhou O Z. Applications of carbon nanotubes. In Carbon Nanotubes. Berlin: Springer, 2001: 391–425.Google Scholar
  132. [132]
    Yurdumakan B, Raravikar N R, Ajayan P M, Dhinojwala A. Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem Commun: 3799–3801 (2005)Google Scholar
  133. [133]
    Dhinojwala A, Ge L H, Sethi S, Yurdumakan B, Lijie C, Ajayan P M. Synthetic gecko foot-hairs from multiwalled carbon nanotubes. In 2007 Spring National ACS Meeting, Chicago, 2007: 64.Google Scholar
  134. [134]
    Zhao Y, Tong T, Delzeit L, Kashani A, Meyyappan M, Majumdar A. Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. J Vac Sci Technol B24: 331–335 (2006)Google Scholar
  135. [135]
    Wirth C T, Hofmann S, Robertson J. Surface properties of vertically aligned carbon nanotube arrays. Diam Relat Mater17: 1518–1524 (2008)Google Scholar
  136. [136]
    Ge L H, Sethi S, Ci L, Ajayan P M, Dhinojwala A. Carbon nanotube-based synthetic gecko tapes. P Natl Acad Sci USA104: 10792–10795 (2007)Google Scholar
  137. [137]
    Qu L, Dai L. Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties. Adv Mater19: 3844–3849 (2007)Google Scholar
  138. [138]
    Qu L, Dai L, Stone M, Xia Z, Wang Z L. Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science322: 238–242 (2008)Google Scholar
  139. [139]
    Majidi C S, Groff R E, Fearing R S. Attachment of fiber array adhesive through side contact. J Appl Phys98: 103521 (2005)Google Scholar
  140. [140]
    Zhou M, Liu K, Wan J, Li X, Jiang K, Zeng H, Zhang X, Meng Y G, Shizhu Wen S Z, Zhu H W, Tian Y. Anisotropic interfacial friction of inclined multiwall carbon nanotube array surface. Carbon30: 5372–5379 (2012)Google Scholar
  141. [141]
    Hu S H, Xia Z H, Gao X S. Strong adhesion and friction coupling in hierarchical carbon nanotube arrays for dry adhesive applications. ACS Appl Mater Inter4: 1972–1980 (2012)Google Scholar
  142. [142]
    Zheng Y M, Gao X F, Jiang L. Directional adhesion of superhydrophobic butterfly wings. Soft Matter3: 178–182 (2007)Google Scholar
  143. [143]
    Lee J H, Fearing R S, Komvopoulos K. Directional adhesion of gecko-inspired angled microfiber arrays. Appl Phys Lett93: 191910 (2008)Google Scholar
  144. [144]
    Murphy M P, Aksak B, Sitti M. Gecko-inspired directional and controllable adhesion. Small5: 170–175 (2009)Google Scholar
  145. [145]
    Tamelier J, Chary S, Turner K L. Vertical anisotropic microfibers for a gecko-inspired adhesive. Langmuir28: 8746–8752 (2012)Google Scholar
  146. [146]
    Sameoto D, Menon C. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives. J Micromech Microeng19: 115002 (2009)Google Scholar
  147. [147]
    Shon J K, Kong S S, Kim J M, Ko C H, Jin M, Lee Y Y, Hwang S H, Yoon J A, Kim J N. Facile synthesis of highly ordered mesoporous silver using cubic mesoporous silica template with controlled surface hydrophobicity. Chem Commun14: 650–652 (2009)Google Scholar
  148. [148]
    Gravish N, Wilkinson M, Sponberg S, Parness A, Esparza N, Soto D, Yamaguchi T, Broide M, Cutkosky M, Creton C, Autumn K. Rate-dependent frictional adhesion in natural and synthetic gecko setae. J Roy Soc Interface7: 259–269 (2010)Google Scholar

Copyright information

© The author(s) 2013

This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited

Authors and Affiliations

  • Ming Zhou
    • 1
  • Noshir Pesika
    • 2
  • Hongbo Zeng
    • 3
  • Yu Tian
    • 1
    Email author
  • Jacob Israelachvili
    • 4
  1. 1.State Key Laboratory of TribologyTsinghua UniversityBeijingChina
  2. 2.Chemical and Biomolecular Engineering DepartmentTulane UniversityNew OrleansUSA
  3. 3.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  4. 4.Department of Chemical Engineering, Materials Research LaboratoryUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations