Skip to main content

Properties, Principles, and Parameters of the Gecko Adhesive System

  • Chapter
  • First Online:
Biological Adhesives

Abstract

Current understanding of the adhesion system of geckos is the culmination of efforts by investigators throughout the biological and applied sciences. Continuing research in this area promises dividends in areas such as biomechanics, evolution, ecology, adhesive technology, and robotics. We describe here the key topics involved in the gecko adhesion system: the notable properties, the underlying physical principles, and the parameters that govern system performance. Additionally, we highlight the most important unresolved issues and propose productive directions related to gecko adhesion research and bioinspired engineering.

The designers of the future will have smarter adhesives that do considerably more than just stick. (Fakley 2001)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abusomwan UA, Sitti M (2014) Mechanics of load-drag-unload contact cleaning of gecko-inspired fibrillar adhesives. Langmuir 30(40):11913–11918

    Article  CAS  PubMed  Google Scholar 

  • Alibardi L (2003) Ultrastructural autoradiographic and immunocytochemical analysis of setae formation and keratinization in the digital pads of the gecko Hemidactylus turcicus (Gekkonidae, Reptilia). Tissue Cell 35(4):288–296

    Article  CAS  PubMed  Google Scholar 

  • Altevogt R (1954) Probleme eines Fuβes. Kosmos. Gesellschaft der Naturfreunde (Stuttgart) 50:428–430

    Google Scholar 

  • Aristotle (1910) Historia animalium. Translation by D’Arcy Thompson. The Clarendon Press, Oxford

    Google Scholar 

  • Arzt E, Enders S, Gorb S (2002) Towards a micromechanical understanding of biological surface devices. Z Met 93(5):345–351

    Article  CAS  Google Scholar 

  • Arzt E, Gorb S, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci 100(19):10603–10606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Autumn K, Hansen W (2006) Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J Comp Physiol A 192(11):1205–1212

    Article  Google Scholar 

  • Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42(6):1081–1090

    Article  PubMed  Google Scholar 

  • Autumn K, Liang YA, Tonia Hsieh S, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ (2000) Adhesive force of a single gecko foot-hair. Nature 405(6787):681–685

    Article  CAS  PubMed  Google Scholar 

  • Autumn K, Ryan MJ, Wake DB (2002a) Integrating historical and mechanistic biology enhances the study of adaptation. Q Rev Biol 77(4):383–408

    Article  PubMed  Google Scholar 

  • Autumn K, Sitti M, Liang YA, Peattie AM, Hansen WR, Sponberg S, Kenny TW, Fearing R, Isrealachvili JN, Full RJ (2002b) Evidence for van der Waals adhesion in gecko setae. Proc Natl Acad Sci 99(19):12252–12256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Autumn K, Buehler M, Cutkosky M, Fearing R, Full RJ, Goldman D, Groff R, Provancher W, Rizzi AA, Saranli U, Saunders A, Koditschek DE (2005) Robotics in Scansorial Environments. In: Gerhart GR, Shoemaker CM, Gage DW (eds) Proceedings of the SPIE vol. 5804: unmanned ground vehicle technology VII. SPIE, Bellingham, WA, pp 291–302

    Chapter  Google Scholar 

  • Autumn K, Dittmore A, Santos D, Spenko M, Cutkosky M (2006a) Frictional adhesion: a new angle on gecko attachment. J Exp Biol 209(18):3569–3579

    Article  CAS  PubMed  Google Scholar 

  • Autumn K, Hsieh ST, Dudek DM, Chen J, Chitaphan C, Full RJ (2006b) Dynamics of geckos running vertically. J Exp Biol 209(2):260–272

    Article  CAS  PubMed  Google Scholar 

  • Autumn K, Majidi C, Groff RE, Dittmore A, Fearing R (2006c) Effective elastic modulus of isolated gecko setal arrays. J Exp Biol 209(18):3558–3568

    Article  CAS  PubMed  Google Scholar 

  • Autumn K, Niewiarowski PH, Puthoff JB (2014) Gecko adhesion as a model system for integrative biology, interdisciplinary science, and bioinspired engineering. Annu Rev Ecol Evol Syst 45:445–470

    Article  Google Scholar 

  • Baier RE, Shafrin EG, Zisman WA (1968) Adhesion: mechanisms that assist or impede it. Science 162(3860):1360–1368

    Article  CAS  PubMed  Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202(1):1–8

    Article  CAS  Google Scholar 

  • Bauer AM (1998) Morphology of the adhesive tail tips of carphodactyline geckos (Reptilia: Diplodactylidae). J Morphol 235(1):41–58

    Article  Google Scholar 

  • Bauer AM, Russell AP, Powell GL (1996) The evolution of locomotor morphology in Rhoptropus (Squamata: Gekkonidae): Functional and phylogenetic considerations. Afr J Herpetol 45(1):8–30

    Article  Google Scholar 

  • Baum C, Meyer W, Stelzer R, Fleischer L-G, Siebers D (2002) Average nanorough skin surface of the pilot whale (Globicephala melas, Delphinidae): considerations on the self-cleaning abilities based on nanoroughness. Mar Biol 140(3):653–657

    Article  Google Scholar 

  • Baumberger T, Berthoud P, Caroli C (1999) Physical analysis of the state- and rate-dependent friction law. II Dynamic friction. Phys Rev B 60(6):3928–3939

    Article  CAS  Google Scholar 

  • Bellairs A (1970) The life of reptiles. Universe Books, New York

    Google Scholar 

  • Bhushan B (2013) Introduction to tribology. Wiley, New York

    Book  Google Scholar 

  • Biewener AA, Full RJ (1992) Force platform and kinematic analysis. In: Biewener AA (ed) Biomechanics: structures and systems: a practical approach. IRL Press at Oxford University Press, Oxford, pp 45–73

    Google Scholar 

  • Blackwall J (1845) On the means by which walk various animals on the vertical surface of polished bodies. Ann Mag Nat Hist Ser 1 15(96):115–119

    Google Scholar 

  • Bonser RHC (2000) The Young’s modulus of ostrich claw keratin. J Mater Sci Lett 19(12):1039–1040

    Article  CAS  Google Scholar 

  • Bonser RHC, Purslow PP (1995) The Young’s modulus of feather keratin. J Exp Biol 198(4):1029–1033

    CAS  PubMed  Google Scholar 

  • Brainerd EL (1994) Adhesion force of ants on smooth surfaces. Am Zool 34(5):128A (Abstract from 1994 American Society of Zoologists Annual Meeting.)

    Google Scholar 

  • Braun M (1878) Zur Bedeutung der Cuticularborsten auf den Haftlappen der Geckotiden. Arbeiten aus dem Zoologisch-Zootomischen Institut in Würzburg 4:231–237

    Google Scholar 

  • Brörmann K, Barel I, Urbakh M, Bennewitz R (2013) Friction on a microstructured elastomer surface. Tribol Lett 50(1):3–15

    Article  Google Scholar 

  • Campolo D, Jones S, Fearing RS (2003) Fabrication of gecko foot-hair like nano structures and adhesion to random rough surfaces. In: Proceedings of the third IEEE conference on nanotechnology, vol. 2. IEEE, Los Alamitos, pp 856–859

    Google Scholar 

  • Cartier O (1872) Studien über den feineren Bau der Epidermis bei den Geckotiden. Verhandlungen der Physikalisch-medincinischen Gesellschaft zu Würzburg 3:7–22

    Google Scholar 

  • Cartier O (1874a) Studien über den feineren Bau der Haut bei Reptilien. I Die Epidermis der Geckotiden Arbeiten aus dem. Zoologisch-Zootomischen Institut in Würzburg 1:83–96

    Google Scholar 

  • Cartier O (1874b) Studien über den feineren Bau der Haut bei Reptilien. II Ueber die Wachsthumserscheinimgen der Oberhaut von Schlangen und Eidechsen bei der Häutung Arbeiten aus dem. Zoologisch-Zootomischen Institut in Würzburg 1:239–258

    Google Scholar 

  • Chen B, Gao H (2010) An alternative explanation of the effect of humidity in gecko adhesion: stiffness reduction enhances adhesion on a rough surface. Int J Appl Mech 2(1):1–9

    Article  Google Scholar 

  • Chen JJ, Peattie AM, Autumn K, Full RJ (2006) Differential leg function in a sprawled-posture quadrupedal trotter. J Exp Biol 209(2):249–259

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Wu P, Gao H (2009) Pre-tension generates strongly reversible adhesion of a spatula pad on substrate. J R Soc Interface 6(35):529–537

    Article  PubMed  Google Scholar 

  • Chui BW, Kenny TW, Mamin HJ, Terris BD, Rugar D (1998) Independent detection of vertical and lateral forces with a sidewall-implanted dual-axis piezoresistive cantilever. Appl Phys Lett 72(11):1388–1391

    Article  CAS  Google Scholar 

  • Creton C, Liebler L (1996) How does tack depend on contact time and contact pressure? J Polym Sci B Polym Phys 34(3):545–554

    Article  CAS  Google Scholar 

  • Dahlquist CA (1969) Pressure-sensitive adhesives. In: Patrick RL (ed) Treatise on adhesion and adhesives, vol 2. Materials. Dekker, New York, pp 219–260

    Google Scholar 

  • Daltorio KA, Gorb S, Peressadko A, Horchler AD, Wei TE, Ritzmann RE, Quinn RD (2007) Microstructured polymer adhesive feet for climbing robots. MRS Bull 32(6):504–508

    Article  CAS  Google Scholar 

  • Decuzzi P, Srolovitz DJ (2004) Scaling laws for opening partially adhered contacts in MEMS. J Microelectromech Syst 13(2):377–385

    Article  Google Scholar 

  • Delaugerre M, Alain G, Leoncini A (2015) One island, two geckos and some powder. Why and how a colonization process can fail? In: X Congresso Nazionale della Societas Herpetologica Italica. Societas Herpetologica Italica, Pavia, Italy, pp 117–121

    Google Scholar 

  • Dellit W-D (1934) Zur anatomie und physiologie der Geckozehe. Jenaische Zeitschrift für Naturwissenschaft 68:613–656

    Google Scholar 

  • Dewitz H (1882) Wie ist es den Stubenfliegen und vielen anderen Insecten möglich, an senkrechten Glaswänden emporzulaufen? Sitzungsberichte der Gesellschaft Naturforschender Freunde zu Berlin 17(1):5–7

    Google Scholar 

  • Edwards JS, Tarkanian M (1970) The adhesive pads of Heteroptera: a re-examination. Proc R Entomol Soc Lond A Gen Entomol 45(1-3):1–5

    Google Scholar 

  • Emerson SB, Diehl D (1980) Toe pad morphology and mechanisms of sticking in frogs. Biol J Linn Soc 13(3):199–216

    Article  Google Scholar 

  • Fakley M (2001) Smart adhesives. Chem Ind Mag:691–695

    Google Scholar 

  • Fraser RDB, Parry DAD (1996) The molecular structure of reptilian keratin. Int J Biol Macromol 19(3):207–211

    Article  CAS  PubMed  Google Scholar 

  • Gadow H (1901) Amphibia and reptiles. Cambridge natural history, vol 8. Macmillan & Co., Ltd., London

    Google Scholar 

  • Gao H, Yao H (2004) Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc Natl Acad Sci 101(21):7851–7856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Wang X, Yao H, Gorb S, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37(2-3):275–285

    Article  Google Scholar 

  • Gay C (2002) Stickiness—some fundamentals of adhesion. Integr Comp Biol 42(6):1123–1126

    Article  PubMed  Google Scholar 

  • Gay C, Leibler L (1999) Theory of tackiness. Phys Rev Lett 82(5):936–940

    Article  CAS  Google Scholar 

  • Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapoval SY (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat Mater 2(7):461–463

    Article  CAS  PubMed  Google Scholar 

  • Geisler B, Dittmore A, Gallery B, Stratton T, Fearing R, Autumn K (2005) Deformation of isolated gecko setal arrays: bending or buckling? 2. Kinetics. Society for Integrative and Comparative Biology, San Diego (Abstract from 2005 Society for Integrative and Comparative Biology Annual Meeting)

    Google Scholar 

  • Gennaro JG Jr (1969) The gecko grip. Nat Hist (The Journal of The American Museum of Natural History) 78(7):36–43

    Google Scholar 

  • Ghandi M (2002) The ughly buglies. Swagat Mag Media Transasia, Bangalore

    Google Scholar 

  • Gillett JD, Wigglesworth VB (1932) The climbing organ of an insect, Rhodnius prolixus (Hemiptera; Reduviidae). Proc R Soc B 111(772):364–376

    Article  Google Scholar 

  • Gillies AG, Henry A, Lin H, Ren A, Shiuan K, Fearing RS, Full RJ (2013) Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces. J Exp Biol 217(2):283–289

    Article  PubMed  Google Scholar 

  • Glassmaker JN, Jagota A, Hui C-Y, Kim J (2004) Design of biomimetic fibrillar interfaces: 1. Making contact. J R Soc Interface 1(1):23–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorb EV, Gorb SN (2002) Attachment ability of the beetle Chrysolina fastuosa on various plant surfaces. Entomol Exp Appl 105(1):13–28

    Article  Google Scholar 

  • Gravish N, Wilkinson M, Autumn K (2008) Frictional and elastic energy in gecko adhesive detachment. J R Soc Interface 5(20):339–348

    Article  PubMed  Google Scholar 

  • Gravish N, Wilkinson M, Sponberg S, Parness A, Esparza N, Soto D, Yamaguchi T, Broide M, Cutkosky M, Creton C, Autumn K (2010) Rate-dependent frictional adhesion in natural and synthetic gecko setae. J R Soc Interface 7(43):259–269

    Article  PubMed  Google Scholar 

  • Green DM (1981) Adhesion and the toe-pads of treefrogs. Copeia 1981(4):790–796

    Article  Google Scholar 

  • Greenwood JA (1992) Problems with surface roughness. In: Singer IL, Pollock HM (eds) Fundamentals of friction: macroscopic and microscopic processes, Volume 220 of the NATO ASI Series. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 57–76

    Chapter  Google Scholar 

  • Haase A (1900) Untersuchungen über den Bau und die Entwicklung der Haftlappen bei den Geckotiden. Archiv für Naturgeschichte 1–2(2):321–346

    Google Scholar 

  • Hagey TJ, Puthoff JB, Holbrook M, Harmon LJ, Autumn K (2014) Variation in setal micromechanics and performance of two gecko species. Zoomorphology 133(2):111–126

    Article  Google Scholar 

  • Han D, Zhou K, Bauer AM (2004) Phylogenetic relationships among gekkotan lizards inferred from C-mos nuclear DNA sequences and a new classification of the Gekkota. Biol J Linn Soc 83(3):353–368

    Article  Google Scholar 

  • Hanna G, Jon W, Jon Barnes WP (1991) Adhesion and detachment of the toe pads of tree frogs. J Exp Biol 155(1):103–125

    Google Scholar 

  • Hansen WR, Autumn K (2005) Evidence for self-cleaning in gecko setae. Proc Natl Acad Sci 102(2):385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford series in ecology and evolution. Oxford University Press, Oxford, UK

    Google Scholar 

  • Hawkes EW, Eason EV, Christensen DL, Cutkosky MR (2014) Human climbing with efficiently scaled gecko-inspired dry adhesives. J R Soc Interface 12(102):20140675

    Article  Google Scholar 

  • Hecht MK (1952) Natural selection in the lizard genus Aristelliger. Evolution 6(1):112–124

    Article  Google Scholar 

  • Hepworth J (1854) On the structure of the foot of the fly. J Cell Sci s1–2(7):158–163

    Google Scholar 

  • Hiller U (1968) Untersuchungen zum Feinbau und zur Funktion der Haftborsten von Reptilien. Zeitschrift für Morphologie der Tiere 62(4):307–362

    Article  Google Scholar 

  • Hiller U (1969) Correlation between corona-discharge of polyethylene films and the adhering power of Tarentola M. mauritanica (Rept.). Forma et Functio 1:350–352

    Google Scholar 

  • Hiller U (1971) Form und Funktion der Hautsinnesorgane bei Gekkoniden. Forma et Functio 4:240–253

    Google Scholar 

  • Hiller U (1976) Comparative studies on the functional morphology of two gekkonid lizards. J Bombay Nat Hist Soc 73(2):278–282

    Google Scholar 

  • Hora SL (1924) The adhesive apparatus on the toes of certain geckos and tree frogs. J Proc Asiat Soc Bengal 9:137–145

    Google Scholar 

  • Hu C, Alex Greaney P (2014) Role of seta angle and flexibility in the gecko adhesion mechanism. J Appl Phys 116(7):074302

    Article  CAS  Google Scholar 

  • Hu S, Lopez S, Niewiarowski PH, Xia Z (2012) Dynamic self-cleaning in gecko setae via digital hyperextension. J R Soc Interface 9(76):2781–2790

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber G, Gorb SN, Spolenak R, Arzt E (2005a) Resolving the nanoscale adhesion of individual gecko spatulae by atomic force microscopy. Biol Lett 1(1):2–4

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber G, Mantz H, Spolenak R, Mecke K, Jacobs K, Gorb SN, Artz E (2005b) Evidence for capillary contributions to gecko adhesion from single spatula nanomechanical measurements. Proc Natl Acad Sci 102(45):16293–16296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber G, Gorb SN, Hosoda N, Spolenak R, Arzt E (2007) Influence of surface roughness on gecko adhesion. Acta Biomater 3(4):607–610

    Article  PubMed  Google Scholar 

  • Hui C-Y, Glassmaker NJ, Tang T, Jagota A (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J R Soc Interface 1(1):35–48

    Article  PubMed  PubMed Central  Google Scholar 

  • Irschick DJ, Austin CC, Petren K, Fisher RN, Losos JB, Ellers O (1996) A comparative analysis of clinging ability among pad-bearing lizards. Biol J Linn Soc 59(1):21–35

    Article  Google Scholar 

  • Irving RLG (1955) A history of British mountaineering. B.T. Batsford, London

    Google Scholar 

  • Israelachvili J (2011) Intermolecular and surface forces. Academic, San Diego, CA, USA

    Google Scholar 

  • Jagota A, Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr Comp Biol 42(6):1140–1145

    Article  PubMed  Google Scholar 

  • Jeong J, Kim J, Song K, Autumn K, Lee J (2014) Geckoprinting: assembly of microelectronic devices on unconventional surfaces by transfer printing with isolated gecko setal arrays. J R Soc Interface 11(99):20140627

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc A 324(1558):301–313

    Article  CAS  Google Scholar 

  • Kendall K (1975) Thin-film peeling—the elastic term. J Phys D Appl Phys 8(13):1449–1452

    Article  Google Scholar 

  • Kim TW, Bhushan B (2008) The adhesion model considering capillarity for gecko attachment system. J R Soc Interface 5(20):319–327

    Article  PubMed  Google Scholar 

  • Kim S, Spenko M, Trujillo S, Heyneman B, Santos D, Cutkosky MR (2008) Smooth vertical surface climbing with directional adhesion. IEEE Trans Robot 24(1):65–74

    Article  Google Scholar 

  • Kinloch AJ (1987) Adhesion and adhesives: science and technology, 1st edn. Chapman & Hall, New York

    Book  Google Scholar 

  • Kwak MK, Pang C, Jeong H-E, Kim H-N, Yoon H, Jung H-S, Suh K-Y (2011) Towards the next level of bioinspired dry adhesives: new designs and applications. Adv Funct Mater 21(19):3606–3616

    Article  CAS  Google Scholar 

  • Landmann L (1986) The skin of reptiles: epidermis and dermis. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 2: Vertebrates. Springer Science + Business Media, Berlin, Germany

    Google Scholar 

  • Lee H, Bhushan B (2012) Fabrication and characterization of hierarchical nanostructured smart adhesion surfaces. J Colloid Interface Sci 372(1):231–238

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Fearing RS (2008) Contact self-cleaning of synthetic gecko adhesive from polymer microfibers. Langmuir 24(19):10587–10591

    Article  CAS  PubMed  Google Scholar 

  • Lee YI, Kogan M, Larsen JR (1986) Attachment of the potato leafhopper to soybean plant surfaces as affected by morphology of the pretarsus. Entomol Exp Appl 42(2):101–107

    Article  Google Scholar 

  • Lee J, Bush B, Maboudian R, Fearing RS (2009) Gecko-inspired combined lamellar and nanofibrillar array for adhesion on nonplanar surface. Langmuir 25(21):12449–12453

    Article  CAS  PubMed  Google Scholar 

  • Lees AD, Hardie J (1988) The organs of adhesion in the Aphid Megoura Viciae. J Exp Biol 136(1):209–228

    Google Scholar 

  • Little P (1979) Particle capture by natural surfaces. Agric Aviat 20:129–144

    Google Scholar 

  • Luan B, Robbins MO (2005) The breakdown of continuum models for mechanical contacts. Nature 435(7044):929–932

    Article  CAS  PubMed  Google Scholar 

  • Maderson PFA (1964) Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 203(4946):780–781

    Article  Google Scholar 

  • Mahendra BC (1941) Contributions to the bionomics, anatomy, reproduction and development of the Indian house-gecko, Hemidactylus flaviviridis Rüppel. Part II. The problem of locomotion. Proc Ind Acad Sci B 13(5):288–306

    Google Scholar 

  • McMahon TA, Bonner JT (1983) On size and life. Scientific American Books - W. H. Freeman & Co., New York

    Google Scholar 

  • Menciassi A, Dario P (2003) Bio-inspired solutions for locomotion in the gastrointestinal tract: background and perspectives. Philos Trans R Soc A 361(1811):2287–2298

    Article  Google Scholar 

  • Niewiarowski PH, Lopez S, Ge L, Hagen E, Dhinojwala A (2008) Sticky gecko feet: the role of temperature and humidity. PLoS One 3(5), e2192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Northen MT, Turner KL (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16(8):1159–1156

    Article  CAS  Google Scholar 

  • Pain S (2000) Sticking power. New Sci 168(2270/2271):62–67

    Google Scholar 

  • Peattie AM, Full RJ (2007) Phylogenetic analysis of the scaling of wet and dry biological fibrillar adhesives. Proc Natl Acad Sci 104(47):18595–18600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peattie AM, Fearing RS, Full RJ (2004) Using a simple beam model to predict morphological variation in adhesive gecko hairs. Society for Integrative and Comparative Biology, New Orleans (Abstract from 2004 Society for Integrative and Comparative Biology Annual Meeting)

    Google Scholar 

  • Peressadko A, Gorb SN (2004) When less is more: experimental evidence for tenacity enhancement by division of contact area. J Adhes 80(4):247–261

    Article  CAS  Google Scholar 

  • Persson BNJ (1995) Theory of friction: stress domains, relaxation, and creep. Phys Rev B 51(19):13568–13585

    Article  CAS  Google Scholar 

  • Persson BNJ (2003) On the mechanism of adhesion in biological systems. J Chem Phys 118(16):7614–7621

    Article  CAS  Google Scholar 

  • Persson BNJ, Gorb S (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J Chem Phys 119(21):11437–11444

    Article  CAS  Google Scholar 

  • Pesika NS, Yu T, Zhao B, Rosenberg K, Zeng H, McGuiggan P, Autumn K, Israelachvili JN (2007) Peel-zone model of tape peeling based on the gecko adhesive system. J Adhes 83(4):383–401

    Article  CAS  Google Scholar 

  • Pesika NS, Gravish N, Wilkinson M, Zhao B, Zeng H, Yu T, Israelachvili J, Autumn K (2009a) The crowding model as a tool to understand and fabricate gecko-inspired dry adhesives. J Adhes 85(8):512–525

    Article  CAS  Google Scholar 

  • Pesika NS, Zeng H, Kristiansen K, Zhao B, Yu T, Autumn K, Israelachvili J (2009b) Gecko adhesion pad: a smart surface? J Phys Condens Matter 21(46):464132

    Article  PubMed  CAS  Google Scholar 

  • Peterson JA, Williams EE (1981) A case history in retrograde evolution: the onca lineage in Anoline lizards II Subdigital fine structure. Bull Museum Comp Zool 149(4):215–268

    Google Scholar 

  • Pianka ER, Sweet SL (2005) Integrative biology of sticky feet in geckos. BioEssays 27(6):647–652

    Article  PubMed  Google Scholar 

  • Pocius AV (2012) Adhesion and adhesive technology. Carl Hanser Verlag, Munich, Germany

    Book  Google Scholar 

  • Prowse M, Puthoff JB, Wilkinson M, Autumn K (2011) Effects of humidity on the mechanical properties of gecko setae. Acta Biomater 7(2):733–738

    Article  PubMed  Google Scholar 

  • Pugno NM, Lepore E (2008) Observation of optimal gecko’s adhesion on nanorough surfaces. BioSystems 94(3):218–222

    Article  PubMed  Google Scholar 

  • Puthoff JB, Prowse MS, Wilkinson M, Autumn K (2010) Changes in materials properties explain the effects of humidity on gecko adhesion. J Exp Biol 213(21):3699–3704

    Article  PubMed  Google Scholar 

  • Puthoff JB, Holbrook M, Wilkinson MJ, Jin K, Pesika NS, Autumn K (2013) Dynamic friction in natural and synthetic gecko setal arrays. Soft Matter 9(19):4855–4863

    Article  CAS  Google Scholar 

  • Ringlein J, Robbins MO (2004) Understanding and illustrating the atomic origins of friction. Am J Phys 72(7):884–891

    Article  CAS  Google Scholar 

  • Rizzo NW, Gardner KH, Walls DJ, Keiper-Hrynko NM, Ganzke TS, Hallahan DL (2006) Characterization of the structure and composition of gecko adhesive setae. J R Soc Interface 3(8):441–451

    Article  CAS  PubMed  Google Scholar 

  • Röll B (1995) Epidermal fine structure of the toe tips of Sphaerodactylus cinereus (Reptilia, Gekkonidae). J Zool 235(2):289–300

    Article  Google Scholar 

  • Rosenberg HI, Rose R (1999) Volar adhesive pads of the feathertail glider, Acrobates pygmaeus (Marsupialia; Acrobatidae). Can J Zool 77(2):233–248

    Article  Google Scholar 

  • Ruibal R, Ernst V (1965) The structure of the digital setae of lizards. J Morphol 117(3):271–293

    Article  CAS  PubMed  Google Scholar 

  • Russell AP (1975) A contribution to the functional analysis of the foot of the Tokay, Gekko gecko (Reptilia: Gekkonidae). J Zool 176(4):437–476

    Article  Google Scholar 

  • Russell AP (1976) Some comments concerning the interrelationships amongst gekkonine geckos. In: Bellairs AA, Cox CB (eds) Morphology and biology of reptiles, number 3 in Linnean Society Symposium Series. Academic, London, pp 217–244

    Google Scholar 

  • Russell AP (1979) Parallelism and integrated design in the foot structure of Gekkonine and Diplodactyline Geckos. Copeia 1979(1):1–21

    Article  Google Scholar 

  • Russell AP (1981) Descriptive and functional anatomy of the digital vascular system of the tokay, Gekko gecko. J Morphol 169(3):293–323

    Article  Google Scholar 

  • Russell AP (1986) The morphological basis of weight-bearing in the scansors of the tokay gecko (Reptilia: Sauria). Can J Zool 64(4):948–955

    Article  Google Scholar 

  • Russell AP (2002) Integrative functional morphology of the Gekkotan adhesive system (Reptilia: Gekkota). Integr Comp Biol 42(6):1154–1163

    Article  PubMed  Google Scholar 

  • Russell AP, Bauer AM (1988) Paraphalangeal elements of gekkonid lizards: a comparative survey. J Morphol 197(2):221–240

    Article  Google Scholar 

  • Russell AP, Bauer AM (1990a) Digit I in pad-bearing gekkonine geckos: alternate designs and the potential constraints of phalangeal number. Mem Qld Mus 29(2):453–472

    Google Scholar 

  • Russell AP, Bauer AM (1990b) Oedura and Afroedura (Reptilia: Gekkonidae) revisited: similarities of digital design, and constraints on the development of multiscansorial subdigital pads? Mem Qld Mus 29(2):473–486

    Google Scholar 

  • Russell AP, Rosenberg HI (1981) Self-grooming in Diplodactylus spinigerus (Reptilia: Gekkonidae), with a brief review of such behaviour in reptiles. Can J Zool 59(3):564–566

    Article  Google Scholar 

  • Sauer RA (2009) Multiscale modelling and simulation of the deformation and adhesion of a single gecko seta. Comput Methods Biomech Biomed Engin 12(6):627–640

    Article  PubMed  Google Scholar 

  • Scherge M, Gorb S (2001) Biological micro- and nanotribology: natures solutions nanoscience and technology series. Springer, Berlin, Germany

    Book  Google Scholar 

  • Schleich HH, Kästle W (1986) Ultrastrukturen an Gecko-Zehen (Reptilia: Sauria: Gekkonidae). Amphibia-Reptilia 7(2):141–166

    Article  Google Scholar 

  • Schmidt H (1904) Zur Anatomie und Physiologie der Geckopfote. Jenaische Zeitschrift für Naturwissenschaft 39:551–580

    Google Scholar 

  • Simmermacher G (1884) Haftapparate bei Wirbeltieren. Der Zoologische Garten 25(10):289–301

    Google Scholar 

  • Sitti M, Fearing RS (2003) Synthetic gecko foot-hair micro/nano-structures as dry adhesives. J Adhes Sci Technol 17(8):1055–1073

    Article  CAS  Google Scholar 

  • Slocum AH, Weber AC (2003) Precision passive mechanical alignment of wafers. J Microelectromech Syst 12(6):826–834

    Article  Google Scholar 

  • Spolenak R, Gorb S, Arzt E (2005a) Adhesion design maps for bio-inspired attachment systems. Acta Biomater 1(1):5–13

    Article  PubMed  Google Scholar 

  • Spolenak R, Gorb S, Gao H, Arzt E (2005b) Effects of contact shape on the scaling of biological attachments. Proc R Soc A 461(2054):305–319

    Article  Google Scholar 

  • Stark AY, Sullivan TW, Niewiarowski PH (2012) The effect of surface water and wetting on gecko adhesion. J Exp Biol 215(17):3080–3086

    Article  PubMed  Google Scholar 

  • Stark AY, Badge I, Wucinich NA, Sullivan TW, Niewiarowski PH, Dhinojwala A (2013) Surface wettability plays a significant role in gecko adhesion underwater. Proc Natl Acad Sci 110(16):6340–6345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark AY, Ohlemacher J, Knight A, Niewiarowski PH (2015a) Run don’t walk: locomotor performance of geckos on wet substrates. J Exp Biol 218(15):2435–2441

    Article  PubMed  Google Scholar 

  • Stark AY, Palecek AM, Argenbright CW, Bernard C, Brennan AB, Niewiarowski PH, Dhinojwala A (2015b) Gecko adhesion on wet and dry patterned substrates. PLoS One 10(12), e0145756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stewart WJ, Higham TE (2014) Passively stuck: death does not affect gecko adhesion strength. Biol Lett 10(12):20140701

    Article  PubMed  PubMed Central  Google Scholar 

  • Stork NE (1980) Experimental analysis of adhesion of Chrysolina Polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J Exp Biol 88(1):91–108

    Google Scholar 

  • Stork NE (1983) A comparison of the adhesive setae on the feet of lizards and arthropods. J Nat Hist 17(6):829–835

    Article  Google Scholar 

  • Sun W, Neuzil P, Kustandi TS, Sharon O, Samper VD (2005) The nature of the gecko lizard adhesive force. Biophys J 89(2):14–17

    Article  CAS  Google Scholar 

  • Tian Y, Pesika N, Zeng H, Rosenberg K, Zhao B, McGuiggan P, Autumn K, Israelachvili J (2006) Adhesion and friction in gecko toe attachment and detachment. Proc Natl Acad Sci 103(51):19320–19325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timoshenko SP, Gere SM (1984) Mechanics of materials. Thomson Brooks/Cole, Independence, KY, USA

    Google Scholar 

  • Urbakh M, Klafter J, Gourdon D, Israelachvili J (2004) The nonlinear nature of friction. Nature 430(6999):525–528

    Article  CAS  PubMed  Google Scholar 

  • Vanhooydonck B, Andronescu A, Herrel A, Irschick DJ (2005) Effects of substrate structure on speed and acceleration capacity in climbing geckos. Biol J Linn Soc 85(3):385–393

    Article  Google Scholar 

  • Vinson J, Vinson J-M (1969) The saurian fauna of the Mascarene Islands. In: Mauritius institute bulletin, vol 6. The Mauritius Institute, Port Louis, Mauritius, pp 203–320

    Google Scholar 

  • Vitt LJ, Zani PA (1997) Ecology of the nocturnal lizard Thecadactylus rapicauda (Sauria: Gekkonidae) in the Amazon region. Herpetologica 53(2):165–179

    Google Scholar 

  • von Wittich (1854) Der Mechanismus der Haftzehen von Hyla arborea. Archiv für Anatomie, Physiologie und Wissenschaftliche Medicin 8:170–183

    Google Scholar 

  • Wagler J (1830) Natürliches System der Amphibien: mit vorangehender Classification der Säugethiere und Vögel: ein Beitrag zur vergleichenden Zoologie, 1st edn. J.G. Cotta’schen Buchhandlung, München, Germany

    Book  Google Scholar 

  • Wainwright SA, Biggs WD, Currey JD, Gosline JM (1982) Mechanical design in organisms. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  • Weitlaner F (1902) Eine Untersuchung fiber den Haftfuβ des Gecko. Verhandlungen der Zoologisch-Botanischen Gesellschaft in Wien 52:328–332

    Google Scholar 

  • Williams EE, Peterson JA (1982) Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215(4539):1509–1511

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Wan Y, Hu TS, Liu TX, Tao D, Niewiarowski PH, Yu T, Liu Y, Dai L, Yang Y, Xia Z (2015) Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nat Commun 6:8949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao H, Gao H (2006) Mechanics of robust and releasable adhesion in biology: Bottom-up designed hierarchical structures of gecko. J Mech Phys Solids 54(6):1120–1146

    Article  Google Scholar 

Download references

Acknowledgments

I am grateful to many colleagues for their help with this chapter, including Eduard Arzt, Sanford Autumn, Violeta Autumn, Emerson De Soma, Andrew Dittmore, Ron Fearing, Valeurie Friedman, Bob Full, Bill Geisler, Stas Gorb, Gerrit Huber, Jacob Israelachvili, Carmel Majidi, Anne Peattie, Holger Pfaff, Tony Russell, Andy Smith, and Simon Sponberg. Thanks to Stas Gorb and MPI Stuttgart for the Cryo-SEM image of a single seta. Thanks also to Carmel Majidi and Ron Fearing for Eqs. (11.1) and (11.2). Supported by DARPA N66001-03-C-8045, NSF-NIRT 0304730, DCI/NGIA HM1582-05-2022, and Johnson & Johnson Dupuy-Mitek Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Puthoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Autumn, K., Puthoff, J. (2016). Properties, Principles, and Parameters of the Gecko Adhesive System. In: Smith, A. (eds) Biological Adhesives. Springer, Cham. https://doi.org/10.1007/978-3-319-46082-6_11

Download citation

Publish with us

Policies and ethics