Skip to main content
Log in

Importance of cytochrome 3A4 and 2D6-mediated drug–drug interactions in oxycodone consumption among older adults hospitalized for hip fracture: a cross-sectional study

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Hip fracture is a common injury and represents a major health problem with an increasing incidence. In older adults, opioids such as oxycodone are often preferred to other analgesics such as tramadol because of a lower risk of delirium. Different parameters, such as inhibition of cytochrome P450 (CYP450) 2D6 and/or 3A4, can potentially lead to pharmacokinetic variations of oxycodone representing a risk of adverse drugs effects or lack of drug response. There is a risk of drug–drug interactions involving CYP450 in older adults due to the high prevalence of polypharmacy. This study sought to identify patient characteristics that influence oxycodone administration. A single-center observational study included 355 patients with a hip fracture hospitalized in a geriatric postoperative unit. Composite endpoint based on form, duration, and timing to intake separated patients into three groups: "no oxycodone", "low oxycodone ", and "high oxycodone ". CYP450 interactions were studied based on a composite variable defining the most involved CYP450 pathways between CYP2D6 and CYP3A4. CYP450 interactions with CYP2D6 pathway involved were associated with the risk of “high oxycodone” [odds ratio adjusted on age and the type of hip fracture (OR*) 4.52, 95% confidence interval (CI) 1.39–16.83, p = 0.02)], as well as serum albumin levels (OR* 1.09, 95% CI 1.02–1.17, p = 0.01). Cognitive impairment was negatively associated with the risk of “high oxycodone” (OR* 0.38, 95% CI 0.18–0.77, p = 0.02). This study showed an association between CYP2D6 interactions and higher oxycodone consumption indirectly reflecting the existence of uncontrolled postoperative pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Berry SD, Kiel DP, Colón-Emeric C (2019) Hip Fractures in Older Adults in 2019. JAMA 321:2231–2232. https://doi.org/10.1001/jama.2019.5453

    Article  PubMed Central  PubMed  Google Scholar 

  2. Veronese N, Maggi S (2018) Epidemiology and social costs of hip fracture. Injury 49:1458–1460. https://doi.org/10.1016/j.injury.2018.04.015

    Article  PubMed  Google Scholar 

  3. Fernandez MA, Griffin XL, Costa ML (2015) Management of hip fracture. Br Med Bull 115:165–172. https://doi.org/10.1093/bmb/ldv036

    Article  CAS  PubMed  Google Scholar 

  4. Tedesco D, Gibertoni D, Rucci P et al (2018) Impact of rehabilitation on mortality and readmissions after surgery for hip fracture. BMC Health Serv Res 18:701. https://doi.org/10.1186/s12913-018-3523-x

    Article  PubMed Central  PubMed  Google Scholar 

  5. Seitz DP, Gill SS, Austin PC et al (2016) Rehabilitation of Older Adults with Dementia After Hip Fracture. J Am Geriatr Soc 64:47–54. https://doi.org/10.1111/jgs.13881

    Article  PubMed  Google Scholar 

  6. Swart LM, van der Zanden V, Spies PE et al (2017) The Comparative Risk of Delirium with Different Opioids: A Systematic Review. Drugs Aging 34:437–443. https://doi.org/10.1007/s40266-017-0455-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Brouquet A, Cudennec T, Benoist S et al (2010) Impaired mobility, ASA status and administration of tramadol are risk factors for postoperative delirium in patients aged 75 years or more after major abdominal surgery. Ann Surg 251:759–765. https://doi.org/10.1097/SLA.0b013e3181c1cfc9

    Article  PubMed  Google Scholar 

  8. Barkin RL, Beckerman M, Blum SL et al (2010) Should nonsteroidal anti-inflammatory drugs (NSAIDs) be prescribed to the older adult? Drugs Aging 27:775–789. https://doi.org/10.2165/11539430-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  9. Gabriel RA, Swisher MW, Sztain JF et al (2019) State of the art opioid-sparing strategies for post-operative pain in adult surgical patients. Expert Opin Pharmacother 20:949–961. https://doi.org/10.1080/14656566.2019.1583743

    Article  CAS  PubMed  Google Scholar 

  10. Kokki H, Kokki M, Sjövall S (2012) Oxycodone for the treatment of postoperative pain. Expert Opin Pharmacother 13:1045–1058. https://doi.org/10.1517/14656566.2012.677823

    Article  CAS  PubMed  Google Scholar 

  11. International Narcotics Control Board, United Nations. Available online: https://www.incb.org/incb/en/publications/annual-reports/annual-report-2020.html (accessed on 24 October 2022).

  12. Huddart R, Clarke M, Altman RB et al (2018) PharmGKB summary: oxycodone pathway, pharmacokinetics. Pharmacogenet Genomics 28:230–237. https://doi.org/10.1097/FPC.0000000000000351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Saari TI, Ihmsen H, Neuvonen PJ et al (2012) Oxycodone clearance is markedly reduced with advancing age: a population pharmacokinetic study. Br J Anaesth 108:491–498. https://doi.org/10.1093/bja/aer395

    Article  CAS  PubMed  Google Scholar 

  14. Liukas A, Kuusniemi K, Aantaa R et al (2008) Plasma concentrations of oral oxycodone are greatly increased in the elderly. Clin Pharmacol Ther 84:462–467. https://doi.org/10.1038/clpt.2008.64

    Article  CAS  PubMed  Google Scholar 

  15. Liukas A, Kuusniemi K, Aantaa R et al (2011) Elimination of intravenous oxycodone in the elderly: a pharmacokinetic study in postoperative orthopaedic patients of different age groups. Drugs Aging 28:41–50. https://doi.org/10.2165/11586140-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  16. Lalovic B, Kharasch E, Hoffer C et al (2006) Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther 79:461–479. https://doi.org/10.1016/j.clpt.2006.01.009

    Article  CAS  PubMed  Google Scholar 

  17. Lalovic B, Phillips B, Risler LL et al (2004) Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos 32:447–454. https://doi.org/10.1124/dmd.32.4.447

    Article  CAS  PubMed  Google Scholar 

  18. Romand S, Spaggiari D, Marsousi N et al (2017) Characterization of oxycodone in vitro metabolism by human cytochromes P450 and UDP-glucuronosyltransferases. J Pharm Biomed Anal 144:129–137. https://doi.org/10.1016/j.jpba.2016.09.024

    Article  CAS  PubMed  Google Scholar 

  19. Liukas A, Hagelberg NM, Kuusniemi K et al (2011) Inhibition of cytochrome P450 3A by clarithromycin uniformly affects the pharmacokinetics and pharmacodynamics of oxycodone in young and elderly volunteers. J Clin Psychopharmacol 31:302–308. https://doi.org/10.1097/JCP.0b013e3182189892

    Article  CAS  PubMed  Google Scholar 

  20. Grönlund J, Saari T, Hagelberg N et al (2010) Effect of telithromycin on the pharmacokinetics and pharmacodynamics of oral oxycodone. J Clin Pharmacol 50:101–108. https://doi.org/10.1177/0091270009336444

    Article  CAS  PubMed  Google Scholar 

  21. Nieminen TH, Hagelberg NM, Saari TI et al (2010) Oxycodone concentrations are greatly increased by the concomitant use of ritonavir or lopinavir/ritonavir. Eur J Clin Pharmacol 66:977–985. https://doi.org/10.1007/s00228-010-0879-1

    Article  CAS  PubMed  Google Scholar 

  22. Hagelberg NM, Nieminen TH, Saari TI et al (2009) Voriconazole drastically increases exposure to oral oxycodone. Eur J Clin Pharmacol 65:263–271. https://doi.org/10.1007/s00228-008-0568-5

    Article  CAS  PubMed  Google Scholar 

  23. Saari TI, Grönlund J, Hagelberg NM et al (2010) Effects of itraconazole on the pharmacokinetics and pharmacodynamics of intravenously and orally administered oxycodone. Eur J Clin Pharmacol 66:387–397. https://doi.org/10.1007/s00228-009-0775-8

    Article  CAS  PubMed  Google Scholar 

  24. Nieminen TH, Hagelberg NM, Saari TI et al (2009) Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone. Anesthesiology 110:1371–1378. https://doi.org/10.1097/ALN.0b013e31819faa54

    Article  CAS  PubMed  Google Scholar 

  25. Lee HK, Lewis LD, Tsongalis GJ et al (2006) Negative urine opioid screening caused by rifampin-mediated induction of oxycodone hepatic metabolism. Clin Chim Acta 367:196–200. https://doi.org/10.1016/j.cca.2005.11.030

    Article  CAS  PubMed  Google Scholar 

  26. Sakamoto A, Yamashita M, Hori Y et al (2017) Oxycodone Resistance Due to Rifampin Use in an Osteosarcoma Patient with Tuberculosis. Am J Case Rep 18:1130–1134

    Article  PubMed Central  PubMed  Google Scholar 

  27. Grönlund J, Saari TI, Hagelberg NM et al (2010) Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol 70:78–87. https://doi.org/10.1111/j.1365-2125.2010.03653.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Kummer O, Hammann F, Moser C et al (2011) Effect of the inhibition of CYP3A4 or CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Eur J Clin Pharmacol 67:63–71. https://doi.org/10.1007/s00228-010-0893-3

    Article  CAS  PubMed  Google Scholar 

  29. Grönlund J, Saari TI, Hagelberg NM et al (2011) Effect of inhibition of cytochrome P450 enzymes 2D6 and 3A4 on the pharmacokinetics of intravenous oxycodone: a randomized, three-phase, crossover, placebo-controlled study. Clin Drug Investig 31:143–153. https://doi.org/10.2165/11539950-000000000-00000

    Article  PubMed  Google Scholar 

  30. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 138:103–141. https://doi.org/10.1016/j.pharmthera.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  31. van den Anker J, Reed MD, Allegaert K et al (2018) Developmental Changes in Pharmacokinetics and Pharmacodynamics. J Clin Pharmacol 58:S10–S25. https://doi.org/10.1002/jcph.1284

    Article  CAS  PubMed  Google Scholar 

  32. Zhao M, Ma J, Li M et al (2021) Cytochrome P450 Enzymes and Drug Metabolism in Humans. Int J Mol Sci 22:12808. https://doi.org/10.3390/ijms222312808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Maher RL, Hanlon J, Hajjar ER (2014) Clinical consequences of polypharmacy in elderly. Expert Opin Drug Saf 13:57–65. https://doi.org/10.1517/14740338.2013.827660

    Article  PubMed  Google Scholar 

  34. Collet JP, Thiele H, Barbato E et al (2021) 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 42:1289–1367. https://doi.org/10.1093/eurheartj/ehaa575

    Article  PubMed  Google Scholar 

  35. Service de pharmacologie et toxicologie cliniques - Hôpitaux universitaires de Genève. Available online : https://www.hug.ch/sites/interhug/files/structures/pharmacologie_et_toxicologie_cliniques/images/carte_des_cytochromes_2020.pdf (accessed on 13 November 2022).

  36. Food and Drugs Administration. Available online: https://www.fda.gov/drugs/drug-interactions-labeling/drug-development-and-drug-interactions-table-substrates-inhibitors-and-inducers (accessed on 13 November 2022).

  37. Gallo P, De Vincentis A, Pedone C et al (2019) Drug-drug interactions involving CYP3A4 and p-glycoprotein in hospitalized elderly patients. Eur J Intern Med 65:51–57. https://doi.org/10.1016/j.ejim.2019.05.002

    Article  CAS  PubMed  Google Scholar 

  38. Hadjistavropoulos T, Herr K, Prkachin KM et al (2014) Pain assessment in elderly adults with dementia. Lancet Neurol 13:1216–1227. https://doi.org/10.1016/S1474-4422(14)70103-6

    Article  PubMed  Google Scholar 

  39. Silbert B, Evered L, Scott DA et al (2015) Preexisting cognitive impairment is associated with postoperative cognitive dysfunction after hip joint replacement surgery. Anesthesiology 122:1224–1234. https://doi.org/10.1097/ALN.0000000000000671

    Article  PubMed  Google Scholar 

  40. Dolatowski FC, Frihagen F, Bartels S et al (2019) Screw Fixation Versus Hemiarthroplasty for Nondisplaced Femoral Neck Fractures in Elderly Patients: A Multicenter Randomized Controlled Trial. J Bone Joint Surg Am 101:136–144. https://doi.org/10.2106/JBJS.18.00316

    Article  PubMed  Google Scholar 

  41. Strike SA, Sieber FE, Gottschalk A et al (2013) Role of fracture and repair type on pain and opioid use after hip fracture in the elderly. Geriatr Orthop Surg Rehabil 4:103–108. https://doi.org/10.1177/2151458513518343

    Article  PubMed Central  PubMed  Google Scholar 

  42. Seripa D, Pilotto A, Panza F et al (2010) Pharmacogenetics of cytochrome P450 (CYP) in the elderly. Ageing Res Rev 9:457–474. https://doi.org/10.1016/j.arr.2010.06.001

    Article  CAS  PubMed  Google Scholar 

  43. Ghoneim MM, O’Hara MW (2016) Depression and postoperative complications: an overview. BMC Surg 16:5. https://doi.org/10.1186/s12893-016-0120-y

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the implication of the staff of the geriatric perioperative unit of the Ambroise Paré Hospital (AP-HP, Boulogne-Billancourt) in the development of research projects to improve the management of patients.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, TD, SG, and MP; methodology, TD, SG, and MP; software, TD, SG; validation, TD, SG; formal analysis, TD, SG; investigation, TD, LR, CS; resources, CS, LT, MP; data curation, CS; writing—original draft preparation, TD; writing—review and editing, TD, SG, OL, TT, CS, VS, and MP; visualization, TD; supervision, MP; project administration, MP. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Théodore Decaix.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethics approval

The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of Paris-Saclay University (CER-Paris-Saclay-2022-047).

Informed consent

No subjects involved in this study objected to the retrospective processing of their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decaix, T., Gautier, S., Royer, L. et al. Importance of cytochrome 3A4 and 2D6-mediated drug–drug interactions in oxycodone consumption among older adults hospitalized for hip fracture: a cross-sectional study. Aging Clin Exp Res 35, 2471–2481 (2023). https://doi.org/10.1007/s40520-023-02569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-023-02569-7

Keywords

Navigation