Skip to main content

Advertisement

Log in

Effect of the inhibition of CYP3A4 or CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone

  • Pharmacokinetics and Disposition
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

The main metabolic pathways of oxycodone, a potent opioid analgetic, are N-demethylation (CYP3A4) to inactive noroxycodone and O-demethylation (CYP2D6) to active oxymorphone. We performed a three-way, placebo-controlled, double-blind cross-over study to assess the pharmacokinetic and pharmacodynamic consequences of drug interactions with oxycodone.

Methods

The 12 participants (CYP2D6 extensive metabolizers) were pre-treated with placebo, ketoconazole or paroxetine before oral oxycodone ingestion (0.2 mg/kg).

Results

Pre-treatment with ketoconazole increased the AUC for oxycodone 2- to 3-fold compared with placebo or paroxetine. In combination with placebo, oxycodone induced the expected decrease in pupil diameter. This decrease was accentuated in the presence of ketoconazole, but blunted by paroxetine. In comparison to pre-treatment with placebo, ketoconazole increased nausea, drowsiness, and pruritus associated with oxycodone. In contrast, the effect of pre-treatment with paroxetine on the above-mentioned adverse events was not different from that of placebo. Ketoconazole increased the analgetic effect of oxycodone, whereas paroxetine was not different from placebo.

Conclusions

Inhibition of CYP3A4 by ketoconazole increases the exposure and some pharmacodynamic effects of oxycodone. Paroxetine pretreatment inhibits CYP2D6 without inducing relevant changes in oxycodone exposure, and partially blunts the pharmacodynamic effects of oxycodone due to intrinsic pharmacological activities. Pharmacodynamic changes associated with CYP3A4 inhibition may be clinically important in patients treated with oxycodone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Davis MP, Varga J, Dickerson D, Walsh D, LeGrand SB, Lagman R (2003) Normal-release and controlled-release oxycodone: pharmacokinetics, pharmacodynamics, and controversy. Support Care Cancer 11:84–92

    PubMed  Google Scholar 

  2. Nuutinen LS, Wuolijoki E, Pentikainen IT (1986) Diclofenac and oxycodone in treatment of postoperative pain: a double-blind trial. Acta Anaesthesiol Scand 30:620–624

    Article  CAS  PubMed  Google Scholar 

  3. Parris WC, Johnson BW Jr, Croghan MK et al (1998) The use of controlled-release oxycodone for the treatment of chronic cancer pain: a randomized, double-blind study. J Pain Symptom Manage 16:205–211

    Article  CAS  PubMed  Google Scholar 

  4. Bruera E, Belzile M, Pituskin E et al (1998) Randomized, double-blind, cross-over trial comparing safety and efficacy of oral controlled-release oxycodone with controlled-release morphine in patients with cancer pain. J Clin Oncol 16:3222–3229

    CAS  PubMed  Google Scholar 

  5. Curtis GB, Johnson GH, Clark P et al (1999) Relative potency of controlled-release oxycodone and controlled-release morphine in a postoperative pain model. Eur J Clin Pharmacol 55:425–429

    Article  CAS  PubMed  Google Scholar 

  6. Kirvela M, Lindgren L, Seppala T, Olkkola KT (1996) The pharmacokinetics of oxycodone in uremic patients undergoing renal transplantation. J Clin Anesth 8:13–18

    Article  CAS  PubMed  Google Scholar 

  7. Lalovic B, Phillips B, Risler LL, Howald W, Shen DD (2004) Quantitative contribution of CYP2D6 and CYP3A to oxycodone metabolism in human liver and intestinal microsomes. Drug Metab Dispos 32:447–454

    Article  CAS  PubMed  Google Scholar 

  8. Inturrisi CE (2002) Clinical pharmacology of opioids for pain. Clin J Pain 18:S3–S13

    Article  PubMed  Google Scholar 

  9. Heiskanen T, Olkkola KT, Kalso E (1998) Effects of blocking CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacol Ther 64:603–611

    Article  CAS  PubMed  Google Scholar 

  10. Lalovic B, Kharasch E, Hoffer C, Risler L, Liu-Chen LY, Shen DD (2006) Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther 79:461–479

    Article  CAS  PubMed  Google Scholar 

  11. Zwisler ST, Enggaard TP, Noehr-Jensen L et al (2009) The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Basic Clin Pharmacol Toxicol 104:335–344

    Article  CAS  PubMed  Google Scholar 

  12. Zwisler ST, Enggaard TP, Mikkelsen S, Brosen K, Sindrup SH (2010) Impact of the CYP2D6 genotype on post-operative intravenous oxycodone analgesia. Acta Anaesthesiol Scand 54:232–240

    Article  CAS  PubMed  Google Scholar 

  13. Hagelberg NM, Nieminen TH, Saari TI, Neuvonen M, Neuvonen PJ, Laine K, Olkkola KT (2009) Voriconazole drastically increases exposure to oral oxycodone. Eur J Clin Pharmacol 65:263–271

    Article  CAS  PubMed  Google Scholar 

  14. Gronlund J, Saari T, Hagelberg N, Martikainen IK, Neuvonen PJ, Olkkola KT, Laine K (2010) Effect of telithromycin on the pharmacokinetics and pharmacodynamics of oral oxycodone. J Clin Pharmacol 50:101–108

    Article  CAS  PubMed  Google Scholar 

  15. Nieminen TH, Hagelberg NM, Saari TI et al (2009) Rifampin greatly reduces the plasma concentrations of intravenous and oral oxycodone. Anesthesiology 110:1371–1378

    Article  CAS  PubMed  Google Scholar 

  16. Laugesen S, Enggaard TP, Pedersen RS, Sindrup SH, Brosen K (2005) Paroxetine, a cytochrome P450 2D6 inhibitor, diminishes the stereoselective O-demethylation and reduces the hypoalgesic effect of tramadol. Clin Pharmacol Ther 77:312–323

    Article  CAS  PubMed  Google Scholar 

  17. Müller B, Zopf K, Bachofer J, Steimer W (2003) Optimized strategy for rapid cytochrome P450 2D6 genotyping by real-time long PCR. Clin Chem 49:1624–1631

    Article  PubMed  Google Scholar 

  18. Wenk M, Todesco L, Krahenbuhl S (2004) Effect of St John’s wort on the activities of CYP1A2, CYP3A4, CYP2D6, N-acetyltransferase 2, and xanthine oxidase in healthy males and females. Br J Clin Pharmacol 57:495–499

    Article  CAS  PubMed  Google Scholar 

  19. Neuvonen M, Neuvonen PJ (2008) Determination of oxycodone, noroxycodone, oxymorphone, and noroxymorphone in human plasma by liquid chromatography-electrospray-tandem mass spectrometry. Ther Drug Monit 30:333–340

    Article  CAS  PubMed  Google Scholar 

  20. Haegeli L, Brunner-La Rocca HP, Wenk M, Pfisterer M, Drewe J, Krahenbuhl S (2007) Sublingual administration of furosemide: new application of an old drug. Br J Clin Pharmacol 64:804–809

    CAS  PubMed  Google Scholar 

  21. Savitzky A, Golay MJE (2002) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639

    Article  Google Scholar 

  22. Eisenberg E, Cohen D, Lawental E, Pud D (2007) Personality traits and sensitivity to pain in male chronic opioid addicts. J Opioid Manag 3:225–230

    PubMed  Google Scholar 

  23. Grönlund J, Saari TI, Hagelberg NM, Neuvonen PJ, Olkkola KT, Laine K (2010) Exposure to oral oxycodone is increased by concomitant inhibition of CYP2D6 and 3A4 pathways, but not by inhibition of CYP2D6 alone. Br J Clin Pharmacol 70:78–87

    Article  PubMed  Google Scholar 

  24. Lemberg KK, Heiskanen TE, Neuvonen M, Kontinen VK, Neuvonen PJ, Dahl ML, Kalso EA (2010) Does co-administration of paroxetine change oxycodone analgesia: an interaction study in chronic pain patients. Scand J Pain 1:24–33

    Article  Google Scholar 

  25. Johnson AM (1989) An overview of the animal pharmacology of paroxetine. Acta Psychiatr Scand Suppl 350:14–20

    Article  CAS  PubMed  Google Scholar 

  26. Larson M, Folstein S (2000) Selective serotonin reuptake inhibitor-induced mydriasis. J Am Acad Child Adolesc Psychiatry 39:138–139

    Article  CAS  PubMed  Google Scholar 

  27. Schmitt JA, Riedel WJ, Vuurman EF, Kruizinga M, Ramaekers JG (2002) Modulation of the critical flicker fusion effects of serotonin reuptake inhibitors by concomitant pupillary changes. Psychopharmacology (Berl) 160:381–386

    Article  CAS  Google Scholar 

  28. Knaggs RD, Crighton IM, Cobby TF, Fletcher AJ, Hobbs GJ (2004) The pupillary effects of intravenous morphine, codeine, and tramadol in volunteers. Anesth Analg 99:108–112

    Article  CAS  PubMed  Google Scholar 

  29. Murray RB, Adler MW, Korczyn AD (1983) The pupillary effects of opioids. Life Sci 33:495–509

    Article  CAS  PubMed  Google Scholar 

  30. Lee HK, Wang SC (1975) Mechanism of morphine-induced miosis in the dog. J Pharmacol Exp Ther 192:415–431

    CAS  PubMed  Google Scholar 

  31. Prow MR, Martin KF, Heal DJ (1996) 8-OH-DPAT-induced mydriasis in mice: a pharmacological characterisation. Eur J Pharmacol 317:21–28

    Article  CAS  PubMed  Google Scholar 

  32. Duman EN, Kesim M, Kadioglu M, Yaris E, Kalyoncu NI, Erciyes N (2004) Possible involvement of opioidergic and serotonergic mechanisms in antinociceptive effect of paroxetine in acute pain. J Pharmacol Sci 94:161–165

    Article  CAS  PubMed  Google Scholar 

  33. Kesim M, Duman EN, Kadioglu M, Yaris E, Kalyoncu NI, Erciyes N (2005) The different roles of 5-HT(2) and 5-HT(3) receptors on antinociceptive effect of paroxetine in chemical stimuli in mice. J Pharmacol Sci 97:61–66

    Article  CAS  PubMed  Google Scholar 

  34. Singh VP, Jain NK, Kulkarni SK (2001) On the antinociceptive effect of fluoxetine, a selective serotonin reuptake inhibitor. Brain Res 915:218–226

    Article  CAS  PubMed  Google Scholar 

  35. Erjavec MK, Coda BA, Nguyen Q, Donaldson G, Risler L, Shen DD (2000) Morphine-fluoxetine interactions in healthy volunteers: analgesia and side effects. J Clin Pharmacol 40:1286–1295

    CAS  PubMed  Google Scholar 

  36. Gordon NC, Heller PH, Gear RW, Levine JD (1994) Interactions between fluoxetine and opiate analgesia for postoperative dental pain. Pain 58:85–88

    Article  CAS  PubMed  Google Scholar 

  37. Ferrari A, Coccia CP, Bertolini A, Sternieri E (2004) Methadone—metabolism, pharmacokinetics and interactions. Pharmacol Res 50:551–559

    Article  CAS  PubMed  Google Scholar 

  38. Tateishi T, Krivoruk Y, Ueng YF, Wood AJ, Guengerich FP, Wood M (1996) Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg 82:167–172

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi K, Yamamoto T, Chiba K, Tani M, Shimada N, Ishizaki T, Kuroiwa Y (1998) Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3A4. Drug Metab Dispos 26:818–821

    CAS  PubMed  Google Scholar 

  40. Liu YT, Hao HP, Liu CX, Wang GJ, Xie HG (2007) Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 39:699–721

    Article  CAS  PubMed  Google Scholar 

  41. Link B, Haschke M, Grignaschi N, Bodmer M, Aschmann YZ, Wenk M, Krahenbuhl S (2008) Pharmacokinetics of intravenous and oral midazolam in plasma and saliva in humans: usefulness of saliva as matrix for CYP3A phenotyping. Br J Clin Pharmacol 66:473–484

    Article  CAS  PubMed  Google Scholar 

  42. Kirchheiner J, Schmidt H, Tzvetkov M, Keulen JT, Lotsch J, Roots I, Brockmoller J (2007) Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 7:257–265

    Article  CAS  PubMed  Google Scholar 

  43. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368:704

    Article  PubMed  Google Scholar 

  44. Stamer UM, Stuber F, Muders T, Musshoff F (2008) Respiratory depression with tramadol in a patient with renal impairment and CYP2D6 gene duplication. Anesth Analg 107:926–929

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Division of Clinical Pharmacology & Toxicology, University Hospital Basel, Switzerland, and by Mundipharma Medical Company. We thank Natalie Grignaschi and Beatrice Vetter for the determination of oxycodone.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Krähenbühl.

Additional information

Oliver Kummer and Felix Hammann contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kummer, O., Hammann, F., Moser, C. et al. Effect of the inhibition of CYP3A4 or CYP2D6 on the pharmacokinetics and pharmacodynamics of oxycodone. Eur J Clin Pharmacol 67, 63–71 (2011). https://doi.org/10.1007/s00228-010-0893-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00228-010-0893-3

Keywords

Navigation