Skip to main content
Log in

Sputum culture and antibiotic resistance in elderly inpatients with exacerbation of chronic obstructive pulmonary disease at a tertiary geriatric hospital in southern Vietnam

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Objective

To determine the rate of positive culture sputum and related factors as well as the microorganism features and antibiotic susceptibility of pathogens in elderly inpatients with exacerbation of chronic obstructive pulmonary disease (COPD) in Thong Nhat Hospital, Vietnam.

Methods

This cross-sectional study included elderly patients admitted to the hospital because of exacerbation of COPD. Data of their medical history, symptoms and signs were collected, and the patients were instructed to collect sputum sample. A positive culture was identified with the growth of ≥ 105 colony-forming units per milliliter. Antibiotic susceptibility testing was performed according to the European Committee on Antimicrobial Susceptibility Testing.

Results

There were 167 participants (mean age: 77.5 ± 8.8 years, 87.4% male). The culture-positive rate was 25.1%. A higher proportion of positive culture was among participants with purulent sputum (p = 0.029) and with severe and very severe airflow obstruction (p = 0.005). Three most common agents were Acinetobacter baumannii (24.4%), Klebsiella pneumoniae (22.2%), and Pseudomonas aeruginosa (15.6%). Despite high resistance to almost other antibiotics (> 50% resistance), Acinetobacter baumannii and Pseudomonas aeruginosa were sensitive to colistin, tobramycin, and gentamicin (> 80% susceptibility). Klebsiella pneumoniae was highly sensitive to almost common antibiotics (> 80% susceptibility). Among Gram-positive pathogens, methicillin-resistant Staphylococcus aureus (MRSA) was completely sensitive to vancomycin, teicoplanin, and linezolid.

Conclusion

The sputum culture-positive rate in this study was not high. Most prevalent isolated pathogens were Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Acinetobacter baumannii and Pseudomonas aeruginosa were sensitive to tobramycin, gentamicin, and colistin. Commonly used antibiotics remained effective against Klebsiella pneumoniae. MRSA was sensitive to vancomycin, teicoplanin, and linezolid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Moghoofei M, Azimzadeh Jamalkandi S, Moein M et al (2020) Bacterial infections in acute exacerbation of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Infection 48:19–35. https://doi.org/10.1007/s15010-019-01350-1

    Article  PubMed  Google Scholar 

  2. Sethi S (2010) Infection as a comorbidity of COPD. Eur Respir J 35:1209–1215. https://doi.org/10.1183/09031936.00081409

    Article  CAS  PubMed  Google Scholar 

  3. Sethi S, Murphy TF (2001) Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 14:336–363. https://doi.org/10.1128/CMR.14.2.336-363.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith D, Gill A, Hall L et al (2021) Prevalence, pattern, risks factors and consequences of antibiotic resistance in COPD: a systematic review. COPD 18:1–11. https://doi.org/10.1080/15412555.2021.2000957

    Article  Google Scholar 

  5. Adams SG, Melo J, Luther M et al (2000) Antibiotics are associated with lower relapse rates in outpatients with acute exacerbations of COPD. Chest 117:1345–1352. https://doi.org/10.1378/chest.117.5.1345

    Article  CAS  PubMed  Google Scholar 

  6. Singh D, Agusti A, Anzueto A et al (2019) Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease: the GOLD science committee report 2019. Eur Respir J. https://doi.org/10.1183/13993003.00164-2019

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anthonisen NR, Manfreda J, Warren CP et al (1987) Antibiotic therapy in exacerbations of chronic obstructive pulmonary disease. Ann Intern Med 106:196–204. https://doi.org/10.7326/0003-4819-106-2-196

    Article  CAS  PubMed  Google Scholar 

  8. Soler N, Torres A (2013) Significance of sputum purulence to guide antibiotic therapy in exacerbations of COPD. Eur Respir J 41:248–249. https://doi.org/10.1183/09031936.00097012

    Article  PubMed  Google Scholar 

  9. Halpin DMG, Criner GJ, Papi A et al (2021) Global initiative for the diagnosis, management, and prevention of chronic obstructive lung disease. The 2020 GOLD science committee report on COVID-19 and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 203:24–36. https://doi.org/10.1164/rccm.202009-3533SO

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahler DA, Wells CK (1988) Evaluation of clinical methods for rating dyspnea. Chest 93:580–586. https://doi.org/10.1378/chest.93.3.580

    Article  CAS  PubMed  Google Scholar 

  11. Murray P, Washington J (1975) Microscopic and baceriologic analysis of expectorated sputum. Mayo Clin Proc 50:339–344

    CAS  PubMed  Google Scholar 

  12. Rattani S, Farooqi J, Jabeen G et al (2020) Evaluation of semi-quantitative compared to quantitative cultures of tracheal aspirates for the yield of culturable respiratory pathogens–a cross-sectional study. BMC Pulm Med 20:1–7. https://doi.org/10.1186/s12890-020-01311-7

    Article  CAS  Google Scholar 

  13. European committee on antimicrobial susceptibility testing (2022) Clinical breakpoints - breakpoints and guidance. https://www.eucast.org/clinical_breakpoints. Accessed 10 March 2022

  14. Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281. https://doi.org/10.1111/j.1469-0691.2011.03570.x

    Article  CAS  PubMed  Google Scholar 

  15. Albertson TE, Louie S, Chan AL (2010) The diagnosis and treatment of elderly patients with acute exacerbation of chronic obstructive pulmonary disease and chronic bronchitis. J Am Geriatr Soc 58:570–579. https://doi.org/10.1111/j.1532-5415.2010.02741.x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sharma P, Narula S, Sharma K et al (2017) Sputum bacteriology and antibiotic sensitivity pattern in COPD exacerbation in India. Egypt J Chest Dis Tuberc 66:593–597. https://doi.org/10.1016/j.ejcdt.2017.08.003

    Article  Google Scholar 

  17. Lin SH, Kuo PH, Hsueh PR et al (2007) Sputum bacteriology in hospitalized patients with acute exacerbation of chronic obstructive pulmonary disease in Taiwan with an emphasis on Klebsiella pneumoniae and Pseudomonas aeruginosa. Respirology 12:81–87. https://doi.org/10.1111/j.1440-1843.2006.00999.x

    Article  PubMed  Google Scholar 

  18. Sethi S, Murphy TF (2008) Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 359:2355–2365. https://doi.org/10.1056/NEJMra0800353

    Article  CAS  PubMed  Google Scholar 

  19. Taddei L, Malvisi L, Hui DS et al (2022) Airway pathogens detected in stable and exacerbated COPD in patients in Asia-Pacific. ERJ Open Res. https://doi.org/10.1183/23120541.00057-2022

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vu TVD, Choisy M, Do TTN et al (2021) Antimicrobial susceptibility testing results from 13 hospitals in Viet Nam: VINARES 2016–2017. Antimicrob Resist Infect Control 10:78. https://doi.org/10.1186/s13756-021-00937-4

    Article  PubMed  PubMed Central  Google Scholar 

  21. Montero M, Domínguez M, Orozco-Levi M et al (2009) Mortality of COPD patients infected with multi-resistant Pseudomonas aeruginosa: a case and control study. Infection 37:16–19. https://doi.org/10.1007/s15010-008-8125-9

    Article  CAS  PubMed  Google Scholar 

  22. Sengstock DM, Thyagarajan R, Apalara J et al (2010) Multidrug-resistant Acinetobacter baumannii: an emerging pathogen among older adults in community hospitals and nursing homes. Clin Infect Dis 50:1611–1616. https://doi.org/10.1086/652759

    Article  CAS  PubMed  Google Scholar 

  23. Fournier PE, Richet H, Weinstein RA (2006) The epidemiology and control of Acinetobacter baumannii in health care facilities. Clin Infect Dis 42:692–699. https://doi.org/10.1086/500202

    Article  PubMed  Google Scholar 

  24. Huang H, Chen B, Liu G et al (2018) A multi-center study on the risk factors of infection caused by multi-drug resistant Acinetobacter baumannii. BMC Infect Dis 18:11. https://doi.org/10.1186/s12879-017-2932-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Falagas ME, Karveli EA, Kelesidis I et al (2007) Community-acquired Acinetobacter infections. Eur J Clin Microbiol Infect Dis 26:857–868. https://doi.org/10.1007/s10096-007-0365-6

    Article  CAS  PubMed  Google Scholar 

  26. Wang J-T, McDonald LC, Chang S-C et al (2002) Community-acquired Acinetobacter baumannii bacteremia in adult patients in Taiwan. J Clin Microbiol 40:1526–1529. https://doi.org/10.1128/JCM.40.4.1526-1529.2002

    Article  PubMed  PubMed Central  Google Scholar 

  27. Landman D, Quale JM, Mayorga D et al (2002) Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned. Arch Intern Med 162:1515–1520. https://doi.org/10.1001/archinte.162.13.1515

    Article  PubMed  Google Scholar 

  28. Murphy TF, Sethi S (2002) Chronic obstructive pulmonary disease: role of bacteria and guide to antibacterial selection in the older patient. Drugs Aging 19:761–775. https://doi.org/10.2165/00002512-200219100-00005

    Article  PubMed  Google Scholar 

  29. Hassan AT, Mohamed SA, Mohamed MS et al (2016) Acute exacerbations of chronic obstructive pulmonary disease: etiological bacterial pathogens and antibiotic resistance in Upper Egypt. Egypt J Bronchol 10:283–290. https://doi.org/10.4103/1687-8426.193640

    Article  Google Scholar 

  30. Song J-H, Hsueh P-R, Chung DR et al (2011) Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: an ANSORP study. J Antimicrob Chemother 66:1061–1069. https://doi.org/10.1093/jac/dkr024

    Article  CAS  PubMed  Google Scholar 

  31. Boucher HW, Corey GR (2008) Epidemiology of methicillin-resistant Staphylococcus aureus. Clin Infect Dis 46:S344–S349. https://doi.org/10.1086/533590

    Article  PubMed  Google Scholar 

  32. Oh Y-M, Bhome AB, Boonsawat W et al (2013) Characteristics of stable chronic obstructive pulmonary disease patients in the pulmonology clinics of seven Asian cities. Int J Chron Obstruct Pulmon Dis 8:31–39. https://doi.org/10.2147/COPD.S36283

    Article  PubMed  PubMed Central  Google Scholar 

  33. Antuni JD, Barnes PJ (2016) Evaluation of individuals at risk for COPD beyond the scope of the global initiative for chronic obstructive lung disease. Chronic Obstr Pulm Dis 3:653–667. https://doi.org/10.15326/jcopdf.3.3.2016.0129

    Article  PubMed  PubMed Central  Google Scholar 

  34. Soler N, Agustí C, Angrill J et al (2007) Bronchoscopic validation of the significance of sputum purulence in severe exacerbations of chronic obstructive pulmonary disease. Thorax 62:29–35. https://doi.org/10.1136/thx.2005.056374

    Article  PubMed  Google Scholar 

  35. Soler N, Esperatti M, Ewig S et al (2012) Sputum purulence-guided antibiotic use in hospitalised patients with exacerbations of COPD. Eur Respir J 40:1344–1353. https://doi.org/10.1183/09031936.00150211

    Article  CAS  PubMed  Google Scholar 

  36. Stockley RA, O’Brien C, Pye A et al (2000) Relationship of sputum color to nature and outpatient management of acute exacerbations of COPD. Chest 117:1638–1645. https://doi.org/10.1378/chest.117.6.1638

    Article  CAS  PubMed  Google Scholar 

  37. Tsimogianni AM, Papiris SA, Kanavaki S et al (2009) Predictors of positive sputum cultures in exacerbations of chronic obstructive pulmonary disease. Respirology 14:1114–1120. https://doi.org/10.1111/j.1440-1843.2009.01615.x

    Article  PubMed  Google Scholar 

  38. Miravitlles M, Kruesmann F, Haverstock D et al (2012) Sputum colour and bacteria in chronic bronchitis exacerbations: a pooled analysis. Eur Respir J 39:1354–1360. https://doi.org/10.1183/09031936.00042111

    Article  PubMed  Google Scholar 

  39. Chen K, Pleasants KA, Pleasants RA et al (2020) A systematic review and meta-analysis of sputum purulence to predict bacterial infection in COPD exacerbations. COPD 17:311–317. https://doi.org/10.1080/15412555.2020.1766433

    Article  PubMed  Google Scholar 

  40. Wilkinson TM, Patel IS, Wilks M et al (2003) Airway bacterial load and FEV1 decline in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 167:1090–1095. https://doi.org/10.1164/rccm.200210-1179OC

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Duc Nguyen.

Ethics declarations

Conflict of interest

No conflicts of interest declared.

Ethical approval

Ethical approval was obtained from the local ethics committee of Thong Nhat Hospital, Ho Chi Minh City, Vietnam (reference number: 11/2019/BVTN-HĐYĐ).

Informed consent

Written informed consent was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, D.S., Dinh, H.C., Le, T.D. et al. Sputum culture and antibiotic resistance in elderly inpatients with exacerbation of chronic obstructive pulmonary disease at a tertiary geriatric hospital in southern Vietnam. Aging Clin Exp Res 35, 1347–1356 (2023). https://doi.org/10.1007/s40520-023-02401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-023-02401-2

Keywords

Navigation