Skip to main content

Advertisement

Log in

Abnormal cortical regions and subsystems in whole brain functional connectivity of mild cognitive impairment and Alzheimer’s disease: a preliminary study

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

The disease roots of Alzheimer’s disease (AD) are unknown. Functional connection (FC) methodology based on functional MRI data is an effective lever to investigate macroscopic neural activity patterns. However, regional properties of brain architecture have been less investigated by special markers of graph indexes in general mental disorders. In terms of the set of the abnormal edges in the FCs matrix, this paper introduces the strength index (S-scores) of region centrality on the principle of holism. Then, the important process is to investigate the S-scores of regions and subsystems in 36 healthy controls, 38 mild cognitive impairment (MCI) patients and 34 AD patients. At the edge level, abnormal FCs is numerically increasing progressively from MCI to AD brains. At the region level, the CUN.L, PAL.R, THA.L, and TPOsup.R regions are highlighted with abnormal S-scores in MCI patients. By comparison, more regions are abnormal in AD patients, which are PreCG.L, INS.R, DCG.L, AMYG.R, IOG.R, FFG.L, PoCG.L, PCUN.R, TPOsup.L, MTG.L, and TPOmid.L. Importantly, the regions in DMN have abnormal S-scores in AD groups. At the module level, the S-scores of frontal, parietal, occipital lobe, and cerebellum are found in MCI and AD patients. Meanwhile, the abnormal lateralization is inferred because of the S-scores of left and top hemisphere in the AD group. Though this is strictly a contrastive study, the S-score may be a meaningful imaging marker for excavating AD psychopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368:387–403

    CAS  PubMed  Google Scholar 

  2. Dubois B, Feldman HH, Jacova C et al (2010) Revising the definition of Alzheimer’s disease: a new lexicon. Lancet Neurol 9:1118–11127

    PubMed  Google Scholar 

  3. Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362:329–344

    CAS  PubMed  Google Scholar 

  4. Gauthier S, Reisberg B, Zaudig M et al (2006) (2006) Mild cognitive impairment. Lancet 367:1262–1270

    PubMed  Google Scholar 

  5. Ballard C, Gauthier S, Corbett A et al (2011) Alzheimer’s disease. Lancet 377:1019–1031

    PubMed  Google Scholar 

  6. McKhann GM, Knopman DS, Chertkow H et al (2011) The diagnosis of dementia due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement 7:263–269

    PubMed  PubMed Central  Google Scholar 

  7. Brunden KR, Trojanowski JQ, Lee VM (2009) Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov 8:783–793

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bashan A, Bartsch RP, Kantelhardt JW et al (2012) Network physiology reveals relations between network topology and physiological function. Nat Commun 3:702

    PubMed  PubMed Central  Google Scholar 

  9. Wang XJ, Krystal JH (2014) Computational psychiatry. Neuron 84:638–654

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dubois B, Feldman HH, Jacova C et al (2014) Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria. Lancet Neurol 13:614–629

    PubMed  Google Scholar 

  11. Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20:353–363

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Bassett DS, Zurn P, Gold JI (2018) On the nature and use of models in network neuroscience. Nat Rev Neurosci 19:566–578

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mattson MP (2004) Pathways towards and away from Alzheimer's disease. Nature 430:631–639

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu CC, Liu CC, Kanekiyo T et al (2013) Apolipoprotein E and Alzheimer’s disease: Risk, mechanisms and therapy. Nat Rev Neurol 9:106–118

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Agosta F, Weiler M, Filippi M (2015) Propagation of pathology through brain networks in neurodegenerative diseases: from molecules to clinical phenotypes. CNS Neurosci Ther 21:754–767

    PubMed  PubMed Central  Google Scholar 

  16. Brettschneider J, Del Tredici K, Lee VM et al (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16:109–120

    CAS  PubMed  PubMed Central  Google Scholar 

  17. D’Esposito M, Deouell LY, Gazzaley A (2003) Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci 4:863–872

    PubMed  Google Scholar 

  18. Power JD, Schlaggar BL, Lessov-Schlaggar CN et al (2013) Evidence for hubs in human functional brain networks. Neuron 79:798–813

    CAS  PubMed  Google Scholar 

  19. Greicius MD, Srivastava G, Reiss AL et al (2004) Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci 101:4637–4642

    CAS  PubMed  Google Scholar 

  20. Pakkenberg B, Pelvig D, Marner L et al (2003) Aging and the human neocortex. Exp Gerontol 38:95–99

    PubMed  Google Scholar 

  21. Karas GB, Burton EJ, Rombouts SA et al (2003) A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. NeuroImage 18:895–907

    CAS  PubMed  Google Scholar 

  22. Henneman WJ, Sluimer JD, Barnes J et al (2009) Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 72:999–1007

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Grady C (2012) The cognitive neuroscience of ageing. Nat Rev Neurosci 13:491–505

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee MH, Smyser CD, Shimony JS (2013) Resting-state fMRI: a review of methods and clinical applications. Am J Neuroradiol 34:1866–1872

    CAS  PubMed  Google Scholar 

  25. Pievani M, Filippini N, van den Heuvel MP et al (2014) Brain connectivity in neurodegenerative diseases–-from phenotype to proteinopathy. Nat Rev Neurol 10:620–633

    PubMed  Google Scholar 

  26. Hohenfeld C, Werner CJ, Reetz K (2018) Resting-state connectivity in neurodegenerative disorders: is there potential for an imaging biomarker? Neuroimage Clin 18:849–870

    PubMed  PubMed Central  Google Scholar 

  27. Chandra A, Dervenoulas G, Politis M et al (2019) Magnetic resonance imaging in Alzheimer’s disease and mild cognitive impairment. J Neurol 266:1293–1302

    PubMed  Google Scholar 

  28. Laakso MP, Soininen H, Partanen K et al (1995) Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer’s disease: correlation with memory functions. J Neural Transm 9:73–86

    CAS  Google Scholar 

  29. Lerch JP, Pruessner JC, Zijdenbos A et al (2005) Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cereb Cortex 15:995–1001

    PubMed  Google Scholar 

  30. Teipel SJ, Pruessner JC, Faltraco F et al (2006) Comprehensive dissection of the medial temporal lobe in AD: Measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. J Neurol 253:794–800

    PubMed  Google Scholar 

  31. Small SA, Perera GM, DeLaPaz R et al (1999) Differential regional dysfunction of the hippocampal formation among elderly with memory decline and Alzheimer’s disease. Ann Neurol 45:466–472

    CAS  PubMed  Google Scholar 

  32. Celone KA, Calhoun VD, Dickerson BC et al (2006) Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. J Neurosci 26:10222–10231

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sorg C, Riedl V, Mühlau M et al (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci 104:18760–18765

    CAS  PubMed  Google Scholar 

  34. Biswal BB, Mennes M, Zuo XN et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci 107:4734–4739

    CAS  PubMed  Google Scholar 

  35. Cole DM, Smith SM, Beckmann CF (2010) Advances and pitfalls in the analysis and interpretation of resting-state fMRI data. Front Syst Neurosci 4:8

    PubMed  PubMed Central  Google Scholar 

  36. van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur Neuropsychopharm 20:519–534

    Google Scholar 

  37. Liang X, Zou Q, He Y et al (2013) Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain. Proc Natl Acad Sci 110:1929–1934

    CAS  PubMed  Google Scholar 

  38. Aiello M, Salvatore E, Cachia A et al (2015) Relationship between simultaneously acquired resting-state regional cerebral glucose metabolism and functional MRI: a PET/MR hybrid scanner study. Neuroimage 113:111–121

    PubMed  Google Scholar 

  39. Fornito A, Zalesky A, Breakspear M (2015) The connectomics of brain disorders. Nat Rev Neurosci 16:159–172

    CAS  PubMed  Google Scholar 

  40. Sheline YI, Raichle ME (2013) Resting state functional connectivity in preclinical Alzheimer’s disease. Biol Psychiatry 74:340–347

    PubMed  PubMed Central  Google Scholar 

  41. He Y, Evans A (2010) Graph theoretical modeling of brain connectivity. Curr Opin Neurol 23:341–350

    PubMed  Google Scholar 

  42. Binnewijzend MA, Schoonheim MM, Sanz-Arigita E et al (2012) Resting-state fMRI changes in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 33:2018–2028

    PubMed  Google Scholar 

  43. Zarei M, Beckmann CF, Binnewijzend MA et al (2013) Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer’s disease. Neuroimage 66:28–35

    PubMed  Google Scholar 

  44. Zhang HY, Wang SJ, Xing J et al (2009) Detection of PCC functional connectivity characteristics in resting-state fMRI in mild Alzheimer’s disease. Behav Brain Res 197:103–108

    PubMed  Google Scholar 

  45. Pasquini L, Scherr M, Tahmasian M et al (2015) Link between hippocampus’ raised local and eased global intrinsic connectivity in AD. Alzheimers Dement 11:475–484

    PubMed  Google Scholar 

  46. Badhwar A, Tam A, Dansereau C et al (2017) Resting-state network dysfunction in Alzheimer's disease: a systematic review and meta-analysis. Alzheimers Dement 18:73–85

    Google Scholar 

  47. Schouten TM, Koini M, de Vos F et al (2016) Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer’s disease. Neuroimage Clin 11:46–51

    PubMed  PubMed Central  Google Scholar 

  48. de Vos F, Koini M, Schouten TM et al (2018) A comprehensive analysis of resting state fMRI measures to classify individual patients with Alzheimer’s disease. Neuroimage 167:62–72

    PubMed  Google Scholar 

  49. Liu Y, Liang M, Zhou Y et al (2008) Disrupted small-world networks in schizophrenia. Brain 131:945–961

    PubMed  Google Scholar 

  50. Wang J, Zuo X, Dai Z et al (2013) Disrupted functional brain connectome in individuals at risk for Alzheimer's disease. Biol Psychiatry 73:472–481

    CAS  PubMed  Google Scholar 

  51. Zuo XN, Di Martino A, Kelly C et al (2010) The oscillating brain: complex and reliable. Neuroimage 49:1432–1445

    PubMed  Google Scholar 

  52. Leopold DA, Murayama Y, Logothetis NK (2003) Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. Cereb Cortex 13:422–433

    PubMed  Google Scholar 

  53. Clare S, Bridge H (2005) Methodological issues relating to in vivo cortical myelography using MRI. Hum Brain Mapp 26:240–250

    PubMed  PubMed Central  Google Scholar 

  54. Devlin JT, Poldrack RA (2007) In praise of tedious anatomy. Neuroimage 37:1033–1041

    PubMed  PubMed Central  Google Scholar 

  55. Yeo BT, Krienen FM, Sepulcre J et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165

    PubMed  Google Scholar 

  56. Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159

    PubMed  PubMed Central  Google Scholar 

  57. Dennis EL, Thompson PM (2014) Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol Rev 24:49–62

    PubMed  PubMed Central  Google Scholar 

  58. Dai ZJ, Yan CG, Li KC et al (2015) Identifying and mapping connectivity patterns of brain network hubs in Alzheimer’s disease. Cereb Cortex 25:3723–3742

    PubMed  Google Scholar 

  59. Lord LD, Stevner AB, Deco G et al (2017) Understanding principles of integration and segregation using whole-brain computational connectomics: implications for neuropsychiatric disorders. Philos Trans A 375:1–21

    Google Scholar 

  60. Stam C, Jones B, Nolte G et al (2007) Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex 17:92–99

    CAS  PubMed  Google Scholar 

  61. Liu Y, Yu C, Zhang X et al (2014) Impaired long distance functional connectivity and weighted network architecture in Alzheimer’s disease. Cereb Cortex 24:1422–1436

    PubMed  Google Scholar 

  62. Baron JC, Chételat G, Desgranges B et al (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. NeuroImage 14:298–309

    CAS  PubMed  Google Scholar 

  63. De Jong LW, Der Van HK, Veer IM et al (2008) Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study. Brain 131:3277–3285

    PubMed  PubMed Central  Google Scholar 

  64. Rombouts SA, Barkhof F, Witter MP et al (2000) Unbiased whole-brain analysis of gray matter loss in Alzheimer’s disease. Neurosci Lett 285:231–233

    CAS  PubMed  Google Scholar 

  65. Dickerson BC, Sperling RA (2008) Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia 46:1624–1635

    PubMed  Google Scholar 

  66. Sperling RA, Bates JF, Chua EF et al (2003) fMRI studies of associative encoding in young and elderly controls and mild Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:44–50

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Pariente J, Cole S, Henson R et al (2005) Alzheimer’s patients engage an alternative network during a memory task. Ann Neurol 58:870–879

    PubMed  Google Scholar 

  68. Leal SL, Landau SM, Bell RK et al (2017) Hippocampal activation is associated with longitudinal amyloid accumulation and cognitive decline. Elife 6:e22978

    PubMed  PubMed Central  Google Scholar 

  69. Allen G, Barnard H, McColl R et al (2007) Reduced hippocampal functional connectivity in Alzheimer disease. Arch Neurol 64:1482–1487

    PubMed  Google Scholar 

  70. Wang L, Zang Y, He Y et al (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. NeuroImage 31:469–504

    Google Scholar 

  71. Ferrarini L, Palm WM, Olofsen H et al (2006) Shape differences of the brain ventricles in Alzheimer’s disease. Neuroimage 32:1060–1069

    PubMed  Google Scholar 

  72. Lin F, Ren P, Lo RY et al (2017) Insula and inferior frontal gyrus activities protect memory performance against Alzheimer's disease pathology in old age. J Alzheimers Dis 55:669–678

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yao HX, Liu Y, Zhou B et al (2013) Decreased functional connectivity of the amygdala in Alzheimer’s disease revealed by resting-state fMRI. Eur J Radiol 82:1531–1538

    PubMed  Google Scholar 

  74. Buckner RL, Snyder AZ, Shannon BJ et al (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: Evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang ZQ, Liu Y, Jiang TZ et al (2012) Altered spontaneous activity in Alzheimer’s disease and mild cognitive impairment revealed by regional homogeneity. Neuroimage 59:1429–1440

    PubMed  Google Scholar 

  76. Rombouts SA, Barkhof F, Goekoop R et al (2005) Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 26:231–239

    PubMed  PubMed Central  Google Scholar 

  77. Duara R, Loewenstein DA, Potter E et al (2008) Medial temporal lobe atrophy on MRI scans and the diagnosis of Alzheimer disease. Neurology 71:1986–1992

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Machulda MM, Ward HA, Borowski B et al (2003) Comparison of memory fMRI response among normal, MCI, and Alzheimer's patients. Neurology 61:500–506

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Das SR, Pluta J, Mancuso L et al (2015) Anterior and posterior MTL networks in aging and MCI. Neurobiol Aging 36:S141–S150

    PubMed  Google Scholar 

  80. Cha J, Hang JJ, Kim HJ et al (2013) Functional alteration patterns of default mode networks: comparisons of normal aging, amnestic mild cognitive impairment and Alzheimer's disease. Eur J Neurosci 37:1916–1924

    PubMed  PubMed Central  Google Scholar 

  81. Weiler M, Agosta F, Canu E et al (2015) Following the spreading of brain structural changes in Alzheimer’s disease: a longitudinal, multimodal MRI study. J Alzheimers Dis 47:995–1007

    PubMed  Google Scholar 

  82. Rombouts SA, Barkhof F, Van Meel CS et al (2002) Alterations in brain activation during cholinergic enhancement with rivastigmine in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 73:665–671

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hao J, Li K, Li K et al (2005) Visual attention deficits in Alzheimer’s disease: an fMRI study. Neurosci Lett 385:18–23

    CAS  PubMed  Google Scholar 

  84. Agosta F, Pievani M, Geroldi C et al (2012) Resting state fMRI in Alzheimer's disease: beyond the default mode network. Neurobiol Aging 33:1564–1578

    PubMed  Google Scholar 

  85. Zamboni G, Wilcock GK, Douaud G et al (2013) Resting functional connectivity reveals residual functional activity in Alzheimer’s disease. Biol Psychiatry 74:375–383

    PubMed  Google Scholar 

  86. Sui X, Zhu M, Cui Y et al (2015) Functional connectivity hubs could serve as a potential biomarker in Alzheimer’s disease: a reproducible study. Curr Alzheimer Res 12:974–983

    CAS  PubMed  Google Scholar 

  87. Jacobs HIL, Hopkins DA, Mayrhofer HC et al (2018) The cerebellum in Alzheimer's disease: evaluating its role in cognitive decline. Brain 141:37–47

    PubMed  Google Scholar 

  88. Wegiel J, Wisniewski HM, Dziewiatkowski J et al (1999) Cerebellar atrophy in Alzheimer’s disease—clinicopathological correlations. Brain Res 818:41–50

    CAS  PubMed  Google Scholar 

  89. Tabatabaei-Jafari H, Walsh E, Shaw ME et al (2017) The cerebellum shrinks faster than normal ageing in Alzheimer’s disease but not in mild cognitive impairment. Hum Brain Mapp 38:3141–3150

    PubMed  PubMed Central  Google Scholar 

  90. Balsters JH, Laird AR, Fox PT et al (2014) Bridging the gap between functional and anatomical features of cortico-cerebellar circuits using meta-analytic connectivity modeling. Hum Brain Mapp 35:3152–3169

    PubMed  Google Scholar 

  91. Kim JH, Lee JW, Kim GH et al (2012) Cortical asymmetries in normal, mild cognitive impairment, and Alzheimer’s disease. Neurobiol Aging 33:1959–1966

    PubMed  Google Scholar 

  92. Long X, Zhang L, Liao W et al (2013) Distinct laterality alterations distinguish mild cognitive impairment and Alzheimer’s disease from healthy aging: statistical parametric mapping with high resolution MRI. Hum Brain Mapp 34:3400–3410

    PubMed  Google Scholar 

  93. Barnes J, Scahill RI, Schott JM et al (2005) Does Alzheimer's disease affect hippocampal asymmetry? Evidence from a cross-sectional and longitudinal volumetric MRI study. Dement Geriatr Cogn Disord 19:338–344

    PubMed  Google Scholar 

  94. Filippi M, Basaia S, Canu E et al (2017) Brain network connectivity differs in early-onset neurodegenerative dementia. Neurology 89:1764–1772

    PubMed  PubMed Central  Google Scholar 

  95. Banks SJ, Zhuang X, Bayram E et al (2018) Default mode network lateralization and memory in healthy aging and Alzheimer’s disease. J Alzheimers Dis 66:1223–1234

    PubMed  PubMed Central  Google Scholar 

  96. Yang C, Zhong S, Zhou X et al (2017) The abnormality of topological asymmetry between hemispheric brain white matter networks in Alzheimer’s disease and mild cognitive impairment. Front Aging Neurosci 9:261

    PubMed  PubMed Central  Google Scholar 

  97. Borst G, Thompson WL, Kosslyn SM (2011) Understanding the dorsal and ventral systems of the human cerebral cortex: beyond dichotomies. Am Psychol 66:624–632

    PubMed  Google Scholar 

  98. Vossel S, Geng JJ, Fink GR (2014) Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist 20:150–159

    PubMed  PubMed Central  Google Scholar 

  99. Andrews-Hanna JR, Reidler JS, Sepulcre J et al (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65:550–562

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Adriaanse SM, Binnewijzend MA, Ossenkoppele R et al (2014) Widespread disruption of functional brain organization in early-onset Alzheimer’s disease. PLoS ONE 9:e102995

    PubMed  PubMed Central  Google Scholar 

  101. Thompson PM, Hayashi KM, de Zubicaray G et al (2003) Dynamics of gray matter loss in Alzheimer’s disease. J Neurosci 23:994–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Lustig C, Snyder AZ, Bhakta M et al (2003) Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci 100:14504–14509

    CAS  PubMed  Google Scholar 

  103. Greicius MD, Supekar K, Menon V et al (2009) Resting-state functional connectivity reflects structural connectivity in the default-mode network. Cereb Cortex 19:72–78

    PubMed  Google Scholar 

Download references

Funding

The author did not receive any funding or support for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Chen.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Statement of human and animal rights

All procedures performed in the study were in accordance with the ethical standards of the institution and the national research committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See appendix Table 2.

Table 2 The abbreviation of AAL 116-based regions and their systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B. Abnormal cortical regions and subsystems in whole brain functional connectivity of mild cognitive impairment and Alzheimer’s disease: a preliminary study. Aging Clin Exp Res 33, 367–381 (2021). https://doi.org/10.1007/s40520-020-01539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-020-01539-7

Keywords

Navigation