Skip to main content

Advertisement

Log in

Predisposing factors to heart failure in diabetic nephropathy: a look at the sympathetic nervous system hyperactivity

  • Review
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Diabetes mellitus (DM) and heart failure (HF) are frequent comorbidities among elderly patients. HF, a leading cause of mortality and morbidity worldwide, is characterized by sympathetic nervous system hyperactivity. The prevalence of diabetes mellitus (DM) is rapidly growing and the risk of developing HF is higher among DM patients. DM is responsible for several macro- and micro-angiopathies that contribute to the development of coronary artery disease (CAD), peripheral artery disease, retinopathy, neuropathy and diabetic nephropathy (DN) as well. Independently of CAD, chronic kidney disease (CKD) and DM increase the risk of HF. Individuals with diabetic nephropathy are likely to present a distinct pathological condition, defined as diabetic cardiomyopathy, even in the absence of hypertension or CAD, whose pathogenesis is only partially known. However, several hypotheses have been proposed to explain the mechanism of diabetic cardiomyopathy: increased oxidative stress, altered substrate metabolism, mitochondrial dysfunction, activation of renin–angiotensin–aldosterone system (RAAS), insulin resistance, and autonomic dysfunction. In this review, we will focus on the involvement of sympathetic system hyperactivity in the diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HF:

Heart failure

DM:

Diabetes mellitus

CAD:

Coronary artery disease

AF:

Atrial fibrillation

SNS:

Sympathetic nervous system

CA:

Cathecolamines

βARs:

β-adrenergic receptors

DN:

Diabetic nephropathy

CKD:

Chronic kidney disease

RAAS:

Renin–angiotensin–aldosterone system

NE:

Norepinephrine

EN:

Epinephrine

GRK2:

G-protein coupled receptor kinase 2.

References

  1. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després JP, Fullerton HJ, Howard VJ (2016) Heart disease and stroke statistics—2016 update: a report from the American Heart Association. Circulation 133:e38–e360. https://doi.org/10.1161/CIR.0000000000000350

    Article  PubMed  Google Scholar 

  2. Roger LV (2013) Epidemiology of heart failure. Circ Res 113:646–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Katsanos S, Mavrogenis AF, Kafkas N, Sardu C, Kamperidis V, Katsanou P, Farmakis D, Parissis J (2017) Cardiac biomarkers predict 1-year mortality in elderly patients undergoing hip fracture surgery. Orthopedics 40:e417–e424

    Article  PubMed  Google Scholar 

  4. Velagaleti RS, Gona P, Larson MG, Wang TJ, Levy D, Benjamin EJ, Selhub J, Jacques PF, Meigs JB, Tofler GH, Vasan RS (2010) Multimarker approach for the prediction of heart failure incidence in the community. Circulation 122:1700–1706. https://doi.org/10.1161/CIRCULATIONAHA.109.929661

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kalogeropoulos A, Georgiopoulou V, Psaty BM, Rodondi N, Smith AL, Harrison DG, Liu Y, Hoffmann U, Bauer DC, Newman AB, Kritchevsky SB, Harris TB, Butler J (2010) Health ABC Study Investigators. Health ABC Study Investigators. Inflammatory markers and incident heart failure risk in older adults: the health ABC (health, aging, and body composition) study. J Am Coll Cardiol 55:2129–2137. https://doi.org/10.1016/j.jacc.2009.12.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rengo G, Lymperopoulos A, Leosco D, Koch WJ (2011) GRK2 as a novel gene therapy target in heart failure. J Mol Cell Cardiol 50:785–792

    Article  CAS  PubMed  Google Scholar 

  7. Rengo G, Lymperopoulos A, Koch WJ (2009) Future g protein-coupled receptor target for treatment of heart failure. Curr Treat Options Cardiovasc Med 11:328–338

    Article  PubMed  Google Scholar 

  8. King H, Aubert RE, Herman WH (1998) Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care 21:1414–1431

    Article  CAS  PubMed  Google Scholar 

  9. Fox CS, Golden SH, Anderson C, Bray GA, Burke LE, de Boer IH, Deedwania P, Eckel RH, Ershow AG, Fradkin J, Inzucchi SE, Kosiborod M, Nelson RG, Patel MJ, Pignone M, Quinn L, Schauer PR, Selvin E, Vafiadis DK (2015) Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation 132:691–718. https://doi.org/10.1161/CIR.0000000000000230

    Article  CAS  PubMed  Google Scholar 

  10. Sobel BE, Schneider DJ (2005) Cardiovascular complications in diabetes mellitus. Curr Opin Pharmacol 5:143–148

    Article  CAS  PubMed  Google Scholar 

  11. National Kidney Foundation (2002) K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis 39(Suppl 1):S1–S266

    Google Scholar 

  12. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases (2000) US renal data system, USRDS 2000 annual data report. National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda. http://www.usrds.org/atlas_2000.htm. Accessed 12 Sept 2003

  13. Alonso A, Lopez FL, Matsushita K, Loehr LR, Agarwal SK, Chen LY, Soliman EZ, Astor BC, Coresh J (2011) Chronic kidney disease is associated with the incidence of atrial fibrillation: the atherosclerosis risk in communities (ARIC) study. Circulation 123:2946–2953. https://doi.org/10.1161/CIRCULATIONAHA.111.020982

    Article  PubMed  PubMed Central  Google Scholar 

  14. Segall L, Nistor I, Covic A (2014) Heart failure in patients with chronic kidney disease: a systematic integrative review. Biomed Res Int 2014:937398. https://doi.org/10.1155/2014/937398

    Article  PubMed  PubMed Central  Google Scholar 

  15. Metivier F, Marchais SJ, Guerin AP, Pannier B, London GM (2000) Pathophysiology of anaemia: focus on the heart and blood vessels. Nephrol Dial Transpl 15 (Suppl 3):14–18

    Article  Google Scholar 

  16. Bahrami H, Bluemke DA, Kronmal R, Bertoni AG, Lloyd-Jones DM, Shahar E, Szklo M, Lima JA (2008) Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (multi-ethnic study of atherosclerosis) study. J Am Coll Cardiol 51:1775–1783. https://doi.org/10.1016/j.jacc.2007.12.048

    Article  CAS  PubMed  Google Scholar 

  17. Arnlöv J, Evans JC, Meigs JB, Wang TJ, Fox CS, Levy D, Benjamin EJ, D’Agostino RB, Vasan RS (2005) Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the Framingham Heart Study. Circulation 112:969–975. https://doi.org/10.1161/CIRCULATIONAHA.105.538132

    Article  CAS  PubMed  Google Scholar 

  18. Shlipak MG, Fried LF, Cushman M. Manolio TA, Peterson D, Stehman-Breen C, Bleyer A, Newman A, Siscovick D, Psaty B (2005) Cardiovascular mortality risk in chronic kidney disease: comparison of traditional and novel risk factors. JAMA 293:1737–1745. https://doi.org/10.1001/jama.293.14.1737

    Article  CAS  PubMed  Google Scholar 

  19. Valmadrid CT, Klein R, Moss SE, Klein BE (2000) The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria in persons with older-onset diabetes mellitus. Arch Intern Med 160:1093–1100

    Article  CAS  PubMed  Google Scholar 

  20. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardio-renal syndrome. J Am Coll Cardiol 52:1527–1539

    Article  PubMed  Google Scholar 

  21. Schefold JC, Filippatos G, Hasenfuss G, Anker SD, von Haehling S (2016) Heart failure and kidney dysfunction: epidemiology, mechanisms and management. Nat Rev Nephrol 12:610–623. https://doi.org/10.1038/nrneph.2016.113

    Article  CAS  PubMed  Google Scholar 

  22. Kasznicki J, Dzewowski J (2014) Heart failure in the diabetic population—pathophysiology, diagnosis and management. Arch Med Sci 10:546–556. https://doi.org/10.5114/aoms.2014.43748

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115:3213–3223

    Article  PubMed  Google Scholar 

  24. Petersson M, Friberg P, Lambert G, Rundqvist B (2005) Decreased renal sympathetic activity in response to cardiac unloading with nitroglycerin in patients with heart failure. Eur J Heart Fail 7(6):1003–1010

    Article  CAS  PubMed  Google Scholar 

  25. Paollilo S, Rengo G, Pellegrino T, Formisano R, Pagano G, Gargiulo P, Savarese G, Carotenuto R, Petraglia L, Rapacciuolo A, Perrino C, Piscitelli S, Attena E, Del Guercio L, Leosco D, Trimarco B, Cuocolo A, Perrone-Filardi P (2013) Impact of diabetes on cardiac sympathetic innervation in patients with heart failure. Diabetes Care 36(8):2395–2401

    Article  CAS  Google Scholar 

  26. Lymperopoulos A, Rengo G, Koch WJ (2012) GRK2 inhibition in heart failure: something old, something new. Curr Pharm Des 18:186–191

    Article  CAS  PubMed  Google Scholar 

  27. de Lucia C, Femminella GD, Gambino G, Pagano G, Allocca E, Rengo C, Silvestri C, Leosco D, Ferrara N, Rengo G (2014) Adrenal adrenoceptors in heart failure. Front Physiol 5:246. https://doi.org/10.3389/fphys.2014.00246

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella GD, Leosco D, Bonaduce D (2014) β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol 4:396

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by β2-adrenergic signalling in adult mouse cardiomyocytes. Proc Natl Acad Sci USA 98:1607–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rengo G, Cannavo A, Liccardo D, Zincarelli C, de Lucia C, Pagano G, Komici K, Parisi V, Scala O, Agresta A, Rapacciuolo A, Perrone Filardi P, Ferrara N, Koch WJ, Trimarco B, Femminella GD, Leosco D et al (2013) Vascular endothelial growth factor blockade prevents the beneficial effects of β-blocker therapy on cardiac function, angiogenesis, and remodeling in heart failure. Circ Heart Fail 6:1259–1267. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000329

    Article  CAS  PubMed  Google Scholar 

  31. Rengo G, Perrone-Filardi P, Femminella GD, Liccardo D, Zincarelli C, de Lucia C, Pagano G, Marsico F, Lymperopoulos A, Leosco D (2012) Targeting the β-adrenergic receptor system through G-protein-coupled receptor kinase 2: a new paradigm for therapy and prognostic evaluation in heart failure: from bench to bedside. Circ Heart Fail 5:385–391

    Article  CAS  PubMed  Google Scholar 

  32. Bathgate-Siryk A, Dabul S, Pandya K et al (2014) Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension 63:404–412

    Article  CAS  PubMed  Google Scholar 

  33. Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113:739–753. https://doi.org/10.1161/CIRCRESAHA.113.300308

    Article  CAS  PubMed  Google Scholar 

  34. Iaccarino G, Barbato E, Cipolletta E, De Amicis V, Margulies KB, Leosco D, Trimarco B, Koch WJ (2005) Elevated myocardial and lymphocyte GRK2 expression and activity in human heart failure. Eur Heart J 17:1752–1758. https://doi.org/10.1093/eurheartj/ehi429

    Article  Google Scholar 

  35. Lymperopoulos A, Rengo G, Funakoshi H, Eckhart AD, Koch WJ (2007) Adrenal GRK2 mediates sympathetic overdrive in heart failure. Nat Med 13:315–323. https://doi.org/10.1038/nm1553

    Article  CAS  PubMed  Google Scholar 

  36. Rengo G, Pagano G, Filardi PP, Femminella GD, Parisi V, Cannavo A, Liccardo D, Komici K, Gambino G, D’Amico ML, de Lucia C, Paolillo S, Trimarco B, Vitale DF, Ferrara N, Koch WJ, Leosco D (2016) Prognostic value of lymphocyte G protein-coupled receptor kinase-2 protein levels in patients with heart failure. Circ Res 118:1116–1124. https://doi.org/10.1161/CIRCRESAHA.115.308207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Salazar NC, Vallejos X, Siryk A, Rengo G, Cannavo A, Liccardo D, De Lucia C, Gao E, Leosco D, Koch WJ, Lymperopoulos A (2013) GRK2 blockade with βARKct is essential for cardiac β2-adrenergic receptor signaling towards increased contractility. Cell Commun Signal 11:64. https://doi.org/10.1186/1478-811X-11-64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rengo G, Lymperopoulos A, Zincarelli C, Femminella G, Liccardo D, Pagano G, de Lucia C, Cannavo A, Gargiulo P, Ferrara N, Perrone Filardi P, Koch W, Leosco D (2009) Myocardial adeno-associated virus serotype 6-βARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 119:89–98

    Article  CAS  PubMed  Google Scholar 

  39. Lim KHA (2014) Diabetic nephropathy—complications and treatment. Int J Nephrol Renovasc Dis 7:361–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gross JL, de Azevedo MJ, Silveiro SP, Canani LH, Caramori ML, Zelmanovitz T (2005) Diabetic nephropathy: diagnosis, prevention, and treatment. Diabetes Care 28:164–176

    Article  PubMed  Google Scholar 

  41. American Diabetes Association (2016) Classification and diagnosis of diabetes. In: 2016 standards of medical care in diabetes. Diabetes Care 39:S13–S22

    Article  Google Scholar 

  42. Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986

    Article  Google Scholar 

  43. Shurraw S, Hemmelgarn B, Lin M et al (2011) Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease. Arch Intern Med 171:1920–1927

    Article  PubMed  Google Scholar 

  44. Oh SW, Kim YC, Koo HS et al (2011) Glycated haemoglobin and the incidence of end-stage renal disease in diabetics. Nephrol Dial Transpl 26:2238–2244

    Article  CAS  Google Scholar 

  45. Levin BE, Sullivan AC (1987) Glucose-induced norepinephrine levels and obesity resistance. Am J Physiol 253:R475–R481

    CAS  PubMed  Google Scholar 

  46. Anderson EA, Hoffman RP, Balon TW, Sinkey CA, Mark AL (1991) Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J Clin Invest 87:2246–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jyotsna VP, Sahoo A, Sreenivas V, Deepak KK (2009) Prevalence and pattern of cardiac autonomic dysfunction in newly detected type 2 diabetes mellitus. Diabetes Res Clin Pract 83:83–88

    Article  PubMed  Google Scholar 

  48. Morisco C, Lembo G, Trimarco B (2006) Insulin resistance and cardiovascular risk: new insights from molecular and cellular biology. Trends Cardiovasc Med 16:183–188. https://doi.org/10.1016/j.tcm.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  49. Mangmool S, Denkaew T, Parichatikanond W, Kurose H (2017) β-adrenergic receptor and insulin resistance in the heart. Biomol Ther (Seoul) 25:44–56. https://doi.org/10.4062/biomolther.2016.128

    Article  CAS  Google Scholar 

  50. Marsh SA, Powell PC, Agarwal A, Dell’Italia LJ, Chatham JC (2007) Cardiovascular dysfunction in Zucker obese and Zucker diabetic fatty rats: role of hydronephrosis. Am J Physiol Heart Circ Physiol 293:H292–H298

    Article  CAS  PubMed  Google Scholar 

  51. Marsh SA, Dell’italia LJ, Chatham JC (2009) Interaction of diet and diabetes on cardiovascular function in rats. Am J Physiol Heart Circ Physiol 296:H282–H292

    Article  CAS  PubMed  Google Scholar 

  52. Thackeray JT, Radziuk J, Harper ME et al (2011) Sympathetic nervous dysregulation in the absence of systolic left ventricular dysfunction in a rat model of insulin resistance with hyperglycemia. Cardiovasc Diabetol 10:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sellers DJ, Chess-Williams R (2001) The effect of streptozotocin-induced diabetes on cardiac beta-adrenoceptor subtypes in the rat. J Auton Pharmacol 21:15–21

    Article  CAS  PubMed  Google Scholar 

  54. Rengo G, Pagano G, Paolillo S et al (2015) Impact of diabetes mellitus on lymphocyte GRK2 protein levels in patients with heart failure. Eur J Clin Invest 45:187–195. https://doi.org/10.1111/eci.12395

    Article  CAS  PubMed  Google Scholar 

  55. Uriel N, Gonzalez-Costello J, Mignatti A, Morrison KA1, Nahumi N, Colombo PC, Jorde UP (2013) Adrenergic activation, fuel substrate availability, and insulin resistance in patients with congestive heart failure. JACC Heart Fail 1:331–337

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ciccarelli M, Chuprun JK, Rengo G, Gao E, Wei Z, Peroutka RJ, Gold JI, Gumpert A, Chen M, Otis NJ, Dorn GW II, Trimarco B, Iaccarino G, Koch WJ (2011) G protein-coupled receptor kinase 2 activity impairs cardiac glucose uptake and promotes insulin resistance after myocardial ischemia. Circulation 123:1953–1962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Santulli G, Pagano G, Sardu C, Xie W, Reiken S, D’Ascia SL, Cannone M, Marziliano N, Trimarco B, Guise TA, Lacampagne A, Marks AR (2015) Calcium release channel RyR2 regulates insulin release and glucose homeostasis. J Clin Invest 125:1968–1978. https://doi.org/10.1172/JCI79273

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wang Q, Liu Y, Fu Q, Xu B, Zhang Y, Kim S, Tan R, Barbagallo F, West T, Anderson E, Wei W, Abel ED, Xiang YK (2017) Inhibiting insulin-mediated β2-adrenergic receptor activation prevents diabetes-associated cardiac dysfunction. Circulation 135:73–88. https://doi.org/10.1161/CIRCULATIONAHA.116.022281

    Article  CAS  PubMed  Google Scholar 

  59. Pfeifer MA, Weinberg CR, Cook DL, Renan A, Halter JB, Ensinck JW, Porte D Jr (1984) Autonomic neural dysfunction in recently diagnosed diabetic subjects. Diabetes Care 7:447–453

    Article  CAS  PubMed  Google Scholar 

  60. Taskiran M, Rasmussen V, Rasmussen B, Fritz-Hansen T, Larsson HB, Jensen GB, Hilsted J (2004) Left ventricular dysfunction in normotensive Type 1 diabetic patients: the impact of autonomic neuropathy. Diabetes Med 21:524–530

    Article  CAS  Google Scholar 

  61. Pop-Busui R, Kirkwood I, Schmid H, Marinescu V, Schroeder J, Larkin D, Yamada E, Raffel DM, Stevens M (2004) Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol 44:2368–2374

    Article  CAS  PubMed  Google Scholar 

  62. Guarino D, Nannipieri M, Iervasi G, Taddei S, Bruno RM (2017) The role of the autonomic nervous system in the pathophysiology of obesity. Front Physiol 8:665. https://doi.org/10.3389/fphys.2017.00665

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sardu C, Santamaria M, Funaro S, Sacra C, Barbieri M, Paolisso P, Marfella R, Paolisso G, Rizzo MR (2017) Cardiac electrophysiological alterations and clinical response in cardiac resynchronization therapy with a defibrillator treated patients affected by metabolic syndrome. Medicine (Baltimore) 96:e6558. https://doi.org/10.1097/MD.0000000000006558

    Article  Google Scholar 

  64. Sardu C, Carreras G, Katsanos S, Kamperidis V, Pace MC, Passavanti MB, Fava I, Paolisso P, Pieretti G, Nicoletti GF, Santulli G, Paolisso G, Marfella R (2014) Metabolic syndrome is associated with a poor outcome in patients affected by outflow tract premature ventricular contractions treated by catheter ablation. BMC Cardiovasc Disord 14:176. https://doi.org/10.1186/1471-2261-14-176

    Article  PubMed  PubMed Central  Google Scholar 

  65. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, McCullough PA, Kasiske BL, Kelepouris E, Klag MJ, Parfrey P, Pfeffer M, Raij L, Spinosa DJ, Wilson PW, American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention, American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention (2003) Kidney disease as a risk factor for development of cardiovascular disease. Circulation 108:2154–2169

    Article  PubMed  Google Scholar 

  66. Ishii M, Ikeda T, Takagi M, Kimura K, Atarashi K, Uehara Y, Matsuoka H, Murao S (1983) Elevated plasma catecholamines in hypertensives with primary glomerular diseases. Hypertension 5:545–551

    Article  CAS  PubMed  Google Scholar 

  67. Converse RL Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG et al (1992) Sympathetic overactivity in patients with chronic renal failure. N Engl J Med 327:1912–1918

    Article  PubMed  Google Scholar 

  68. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, Dietl KH, Rahn KH (2002) Sympathetic nerve activity in end-stage renal disease. Circulation 106:1974–1979

    Article  PubMed  Google Scholar 

  69. Campese VM, Kogosov E, Koss M (1995) Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis 26:861–865

    Article  CAS  PubMed  Google Scholar 

  70. Costa F, Diedrich A, Johnson B, Sulur P, Farley G, Biaggioni I (2001) Adenosine, a metabolic trigger of the exercise pressor reflex in humans. Hypertension 37:917–922

    Article  CAS  PubMed  Google Scholar 

  71. Ding Y, Kim S, Lee SY, Koo JK, Wang Z, Choi ME (2014) Autophagy regulates TGF-β expression and suppresses kidney fibrosis induced by unilateral ureteral obstruction. J Am Soc Nephrol 25:2835–2846. https://doi.org/10.1681/ASN.2013101068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Di Lullo L, Rivera R, Barbera V, Bellasi A, Cozzolino M, Russo D, De Pascalis A, Banerjee D, Floccari F, Ronco C (2016) Sudden cardiac death and chronic kidney disease: from pathophysiology to treatment strategies. Int J Cardiol 217:16–27. https://doi.org/10.1016/j.ijcard.2016.04.170 (review)

    Article  PubMed  Google Scholar 

  73. Oikawa K, Ishihara R, Maeda T, Yamaguchi K, Koike A, Kawaguchi H, Tabata Y, Murotani N, Itoh H (2009) Prognostic value of heart rate variability in patients with renal failure on hemodialysis. Int J Cardiol 131:370–377

    Article  PubMed  Google Scholar 

  74. Kamal FA, Travers JG, Schafer AE, Ma Q, Devarajan P, Blaxall BC (2017) G protein-coupled receptor-G-protein βγ-subunit signaling mediates renal dysfunction and fibrosis in heart failure. J Am Soc Nephrol 28:197–208. https://doi.org/10.1681/ASN.2015080852

    Article  CAS  PubMed  Google Scholar 

  75. Chan CT, Shen XS, Picton P, Floras J (2008) Nocturnal home hemodialysis improves baroreflex effectiveness index of end-stage renal disease patients. J Hypertens 26:1795–1800

    Article  CAS  PubMed  Google Scholar 

  76. Underwood CF, Hildreth CM, Wyse BF, Boyd R, Goodchild AK, Phillips JK (2017) Uraemia: an unrecognized driver of central neurohumoral dysfunction in chronic kidney disease? Acta Physiol (Oxf) 219:305–323. https://doi.org/10.1111/apha.12727

    Article  CAS  Google Scholar 

  77. Liu ZZ, Bullen A, Li Y, Singh P (2017) Renal oxygenation in the pathophysiology of chronic kidney disease. Front Physiol 8:385. https://doi.org/10.3389/fphys.2017.00385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cheong HI, Asosingh K, Stephens OR, Queisser KA, Xu W, Willard B, Hu B, Dermawan JK, Stark GR, Naga Prasad SV, Erzurum SC (2016) Hypoxia sensing through β-adrenergic receptors. JCI Insight 1:e90240. https://doi.org/10.1172/jci.insight.90240

    Article  PubMed  PubMed Central  Google Scholar 

  79. Weinrauch LA, D’Elia JA, Gleason RE, Keough J, Mann D, Kennedy FP (1995) Autonomic function in type I diabetes mellitus complicated by nephropathy. A cross-sectional analysis in the presymptomatic phase. Am J Hypertens 8:782–789

    Article  CAS  PubMed  Google Scholar 

  80. Hansen HP, Rossing P, Tarnow L, Nielsen FS, Jensen BR, Parving HH (1996) Circadian rhythm of arterial blood pressure and albuminuria in diabetic nephropathy. Kidney Int 50:579–585

    Article  CAS  PubMed  Google Scholar 

  81. Monteagudo PT, Nóbrega JC, Cezarini PR, Ferreira SR, Kohlmann O Jr, Ribeiro AB, Zanella MT (1996) Altered blood pressure profile, autonomic neuropathy and nephropathy in insulin-dependent diabetic patients. Eur J Endocrinol 135:683–688

    Article  CAS  PubMed  Google Scholar 

  82. Nielsen FS, Hansen HP, Jacobsen P, Rossing P, Smidt UM, Christensen NJ, Pevet P, Vivien-Roels B, Parving HH (1999) Increased sympathetic activity during sleep and nocturnal hypertension in type 2 diabetic patients with diabetic nephropathy. Diabet Med 16:555–562

    Article  CAS  PubMed  Google Scholar 

  83. Weinrauch LA, Kennedy FP, Gleason RE, Keough J, D’Elia JA (1998) Relationship between autonomic function and progression of renal disease in diabetic proteinuria: clinical correlations and implications for blood pressure control. Am J Hypertens 11(Pt 1):302–308

    Article  CAS  PubMed  Google Scholar 

  84. Giordano M, Manzella D, Paolisso G, Caliendo A, Varricchio M, Giordano C (2001) Differences in heart rate variability parameters during the post-dialytic period in type II diabetic and non-diabetic ESRD patients. Nephrol Dial Transpl 16:566–573

    Article  CAS  Google Scholar 

  85. Meinhold JA, Maslowska-Wessel E, Bender R, Sawicki PT (2001) Low prevalence of cardiac autonomic neuropathy in type 1 diabetic patients without nephropathy. Diabet Med 18:607–613

    Article  CAS  PubMed  Google Scholar 

  86. Luippold G, Beilharz M, Mühlbauer B (2004) Chronic renal denervation prevents glomerular hyperfiltration in diabetic rats. Nephrol Dial Transpl 19:342–347

    Article  Google Scholar 

  87. Yao Y, Davis G, Harrison JC, Walker RJ, Sammut IA (2016) Renal functional responses in diabetic nephropathy following chronic bilateral renal denervation. Auton Neurosci. https://doi.org/10.1016/j.autneu.2016.09.019

    Article  PubMed  Google Scholar 

  88. Strojek K, Grzeszczak W, Górska J, Leschinger MI, Ritz E (2001) Lowering of microalbuminuria in diabetic patients by a sympathicoplegic agent: novel approach to prevent progression of diabetic nephropathy? J Am Soc Nephrol 12:602–605

    CAS  PubMed  Google Scholar 

  89. Yasuda G, Hasegawa K, Kuji T, Ogawa N, Shimura G, Umemura S, Tochikubo O (2005) Effects of doxazosin on ambulatory blood pressure and sympathetic nervous activity in hypertensive type 2 diabetic patients with overt nephropathy. Diabet Med 22:1394–1400

    Article  CAS  PubMed  Google Scholar 

  90. Aritomi S, Niinuma K, Ogawa T, Konda T, Nitta K (2013) Additive effects of cilnidipine and angiotensin II receptor blocker in preventing the progression of diabetic nephropathy in diabetic spontaneously hypertensive rats. Clin Exp Nephrol 17:41–50. https://doi.org/10.1007/s10157-012-0677-4

    Article  CAS  PubMed  Google Scholar 

  91. Yasuda G, Saka S, Ando D, Hirawa N (2015) Effects of doxazosin as the third agent on morning hypertension and position-related blood pressure changes in diabetic patients with chronic kidney disease. Clin Exp Hypertens 37:75–81. https://doi.org/10.3109/10641963.2014.913599

    Article  CAS  PubMed  Google Scholar 

  92. Ohno S, Yokoi H, Mori K, Kasahara M, Kuwahara K, Fujikura J, Naito M, Kuwabara T, Imamaki H, Ishii A, Saleem MA, Numata T, Mori Y, Nakao K, Yanagita M, Mukoyama M (2016) Ablation of the N-type calcium channel ameliorates diabetic nephropathy with improved glycemic control and reduced blood pressure. Sci Rep 6:27192. https://doi.org/10.1038/srep27192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kiuchi MG, Chen S, Graciano ML, de Queiroz Carreira MA, Kiuchi T, Andrea BR et al (2015) Acute effect of renal sympathetic denervation on blood pressure in refractory hypertensive patients with chronic kidney disease. Int J Cardiol 190:29–31

    Article  PubMed  Google Scholar 

  94. Ott C, Mahfoud F, Schmid A, Toennes SW, Ewen S, Ditting T et al (2015) Renal denervation preserves renal function in patients with chronic kidney disease and resistant hypertension. J Hypertens 33:1261–1266

    Article  CAS  PubMed  Google Scholar 

  95. Hering D, Marusic P, Duval J, Sata Y, Head GA, Denton KM, Burrows S, Walton AS, Esler MD, Schlaich MP (2017) Effect of renal denervation on kidney function in patients with chronic kidney disease. Int J Cardiol 232:93–97. https://doi.org/10.1016/j.ijcard.2017.01.047

    Article  PubMed  Google Scholar 

  96. Yao Y, Davis G, Harrison JC, Walker RJ, Sammut I (2017) Renal functional responses in diabetic nephropathy following chronic bilateral renal denervation. Auton Neurosci 204:98–104. https://doi.org/10.1016/j.autneu.2016.09.019

    Article  PubMed  Google Scholar 

  97. Brunström M, Eliasson M, Nilsson PM, Carlberg B (2017) Blood pressure treatment levels and choice of antihypertensive agent in people with diabetes mellitus: an overview of systematic reviews. J Hypertens 35:453–462. https://doi.org/10.1097/HJH.0000000000001183

    Article  CAS  PubMed  Google Scholar 

  98. Hart PD, Bakris GL (2007) Should beta-blockers be used to control hypertension in people with chronic kidney disease? Semin Nephrol 27:555–564

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

G. Rengo was supported by the Ministry of Health (Italy) Grant Number GR-2011-02346878 and by San Paolo Bank of Naples and University of Naples Federico II—STAR Program 2016.

Author information

Authors and Affiliations

Authors

Contributions

GR and KK contributed to the review conception and design. KK, GM F, CdL, AC and LB conducted the literature searches and reviewed the identified articles. AC and GC provided critical analysis. DL and NF revised the manuscript for intellectual content. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Klara Komici or Giuseppe Rengo.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komici, K., Femminella, G.D., de Lucia, C. et al. Predisposing factors to heart failure in diabetic nephropathy: a look at the sympathetic nervous system hyperactivity. Aging Clin Exp Res 31, 321–330 (2019). https://doi.org/10.1007/s40520-018-0973-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40520-018-0973-2

Keywords

Navigation