Skip to main content
Log in

Laser Powder Bed Fusion of Ti-6Al-4 V Alloys for the Production of Defect-Free AM Parts: A Recent Update

  • Review
  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Titanium alloy is a material of choice when it comes to applications requiring high-performing mechanical properties, lightweight structure, superior biocompatibility, and excellent corrosion resistance properties. In recent times, laser powder bed fusion (L-PBF) has been widely regarded as one of the most frequently studied additive manufacturing techniques utilizing titanium alloys for the manufacturing of parts in industrial sectors. In this review article, the significant influence of process parameters on the improvement of mechanical and microstructure properties for the development of defect-free L-PBF-processed Ti-6Al-4 V components, the effect of post-processing manufacturing techniques to control the internal defects, its key future directions, and the challenges limiting its adoption for practical application in industries have been properly identified and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the paper. Should any raw data files be needed in another format they are available from the corresponding author upon reasonable request.

References

  1. Snyder, J.C., Thole, K.A.: Understanding laser powder bed fusion surface roughness. J. Manuf. Sci. Eng. (2020). https://doi.org/10.1115/1.4046504

    Article  Google Scholar 

  2. Ansari, M., Jabari, E., Toyserkani, E.: Opportunities and challenges in additive manufacturing of functionally graded metallic materials via powder-fed laser directed energy deposition: A review. J. Mater. Process. Technol. (2021). https://doi.org/10.1016/j.jmatprotec.2021.117117

    Article  Google Scholar 

  3. Omiyale, B.O., Farayibi, P.K.: Additive manufacturing in the oil and gas industries: A review. Anal. Tech. Szeged. (2020). https://doi.org/10.14232/analecta.2020.1.9-18

    Article  Google Scholar 

  4. Ladani, L., Sadeghilaridjani, M.: Review of powder bed fusion additive manufacturing for metals. Metals (2021). https://doi.org/10.3390/met11091391

    Article  Google Scholar 

  5. Gullane, A., Murray, J.W., Hyde, C.J., Sankare, S., Evirgen, A., Clare, A.T.: On the use of multiple layer thicknesses within laser powder bed fusion and the effect on mechanical properties. Mater. Des. (2021). https://doi.org/10.1016/j.matdes.2021.110256

    Article  Google Scholar 

  6. Lu, X., Zhang, W., Chiumenti, M., Cervera, M., Gillham, B., Yu, P., Yin, S., Lin, X., Babu, R.P., Lupoi, R.: Crack-free laser powder bed fusion by substrate design. Addit. Manuf. (2022). https://doi.org/10.1016/j.addma.2022.103149

    Article  Google Scholar 

  7. McGaffey, M., Zur, L.A., Bachynski, N., Oblak, M., James, F., Weese, J.S.: Manual polishing of 3D printed metals produced by laser powder bed fusion reduces biofilm formation. PLoS ONE (2019). https://doi.org/10.1371/journal.pone.0212995

    Article  Google Scholar 

  8. Lek, Y.Z., Wang, C., Shen, X., Chen, Z., Ramamurty, U., Zhou, K.: Additive manufacturing of corrosion-resistant maraging steel M789 by directed energy deposition. Mater. Sci. Eng., A (2022). https://doi.org/10.1016/j.msea.2022.144032

    Article  Google Scholar 

  9. Sandmann, P., Keller, S., Kashaev, N., Ghouse, S., Hooper, P.A., Klusemann, B., Davies, C.M.: Influence of laser shock peening on the residual stresses in additively manufactured 316L by Laser Powder Bed Fusion: A combined experimental–numerical study. Addit. Manuf. (2022). https://doi.org/10.1016/j.addma.2022.103204

    Article  Google Scholar 

  10. Chen, M., Petegem, S.V., Zou, Z., Simonelli, M., Tse, Y.Y., Chang, C.S.T., Makowska, M.G., Sanchez, D.F., Swygenhoven, H.M.V.: Microstructural engineering of a dual-phase Ti-Al-V-Fe alloy via in situ alloying during laser powder bed fusion. Addit. Manuf. (2022). https://doi.org/10.1016/j.addma.2022.103173

    Article  Google Scholar 

  11. Mukherjee, T., DebRoy, T.: Mitigation of lack of fusion defects in powder bed fusion additive manufacturing. J. Manuf. Process. (2018). https://doi.org/10.1016/j.jmapro.2018.10.028

    Article  Google Scholar 

  12. Becker, T.H., Dhansay, N.M.: Influence of porosity on the fatigue life of laser powder bed fusion–produced Ti6Al4V. Mater. Des. Process. Commun. (2021). https://doi.org/10.1002/mdp2.141

    Article  Google Scholar 

  13. Danovitch, J.: Residual stresses and thermal expansion of Ti6Al4V fabricated by laser powder bed fusion. McGill University, Canada (2018)

    Google Scholar 

  14. Liu, W., Al-Hammadi, G., Saleheen, K.M., Abdelrahman, A., Liu, H., Zhang, Z.: Impact of pulsed laser parameters and scanning pattern on the properties of thin-walled parts manufactured using laser metal deposition. Nanomanuf. Metrol. (2022). https://doi.org/10.1007/s41871-022-00175-1

    Article  Google Scholar 

  15. Gharbi, M., Peyre, P., Gorny, C., Carin, M., Morville, S., Le-Masson, P., Carron, D., Fabbro, R.: Influence of a pulsed laser regime on surface finish induced by the direct metal deposition process on a Ti64 alloy. J. Mater. Process. Technol. (2014). https://doi.org/10.1016/j.jmatprotec.2013.10.004

    Article  Google Scholar 

  16. Pinkerton, A.J., Li, L.: The effect of laser pulse width on multiple-layer 316L steel clad microstructure and surface finish. Appl. Surf. Sci. (2003). https://doi.org/10.1016/S0169-4332(02)01422-8

    Article  Google Scholar 

  17. Moat, R.J., Pinkerton, A.J., Li, L., Withers, P.J., Preuss, M.: Residual stresses in laser direct metal deposited Waspaloy. Mater. Sci. Eng., A (2011). https://doi.org/10.1016/j.msea.2010.12.010

    Article  Google Scholar 

  18. Bartolomeu, F., Gasik, M., Silva, F.S., Miranda, G.: Mechanical properties of Ti6Al4V fabricated by laser powder bed fusion: a review focused on the processing and microstructural parameters influence on the final properties. Metals (2022). https://doi.org/10.3390/met12060986

    Article  Google Scholar 

  19. Schwerz C, Nyborg L.: Linking in situ melt pool monitoring to melt pool size distributions and internal flaws in laser powder bed fusion (2021). https://doi.org/10.3390/met11111856

  20. Takase, A.: Residual stress and phase stability of titanium alloys fabricated by laser and electron beam powder bed fusion techniques. Mater. Trans. (2023). https://doi.org/10.2320/matertrans.MT-MLA2022004

    Article  Google Scholar 

  21. Simson, D., Subbu, S.K.: Effect of process parameters on surface integrity of LPBF Ti6Al4V. Procedia CIRP (2022). https://doi.org/10.1016/j.procir.2022.03.111

    Article  Google Scholar 

  22. Levkulich, N.C., Semiatin, S.L., Gockel, J.E., Middendorf, J.R., DeWald, A.T., Klingbeil, N.W.: The effect of process parameters on residual stress evolution and distortion in the laser powder bed fusion of Ti-6Al-4V. Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2019.05.015

    Article  Google Scholar 

  23. Spierings, A.B., Dawson, K., Uggowitzer, P.J., Wegener, K.: Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc-and Zr-modified Al-Mg alloys. Mater. Des. (2018). https://doi.org/10.1016/j.matdes.2017.11.053

    Article  Google Scholar 

  24. Pal, S., Gubeljak, N., Hudak, R., Lojen, G., Rajtukova, V., Predan, J., Kokol, V., Drstvensek, I.: Tensile properties of selective laser melting products affected by building orientation and energy density. Mater. Sci. Eng., A (2019). https://doi.org/10.1016/j.msea.2018.11.130

    Article  Google Scholar 

  25. Cao, S., Zou, Y., Lim, C.V.S., Wu, X.: Review of laser powder bed fusion (LPBF) fabricated Ti-6Al-4V: Process, post-process treatment, microstructure, and property. Light: Adv. Manuf. (2021). https://doi.org/10.37188/lam.2021.020

    Article  Google Scholar 

  26. Nandwana, P., Lee, Y.: Influence of scan strategy on porosity and microstructure of Ti-6Al-4V fabricated by electron beam powder bed fusion. Mater. Today Commun. (2020). https://doi.org/10.1016/j.mtcomm.2020.100962

    Article  Google Scholar 

  27. Attar, H., Calin, M., Zhang, L.C., Scudino, S., Eckert, J.: Manufacture by selective laser melting and mechanical behavior of commercially pure titanium. Mater. Sci. Eng., A (2014). https://doi.org/10.1016/j.msea.2013.11.038

    Article  Google Scholar 

  28. Huang, D., Dong, Y., Chen, H., Zhou, Y., Zhang, M.X., Yan, M.: Effects of processing parameters on a β-solidifying TiAl alloy fabricated by laser-based additive manufacturing. Microstructures (2022). https://doi.org/10.20517/microstructures.2022.17

    Article  Google Scholar 

  29. Sharman, A.R.C., Hughes, J.I., Ridgway, K.: Characterization of titanium aluminide components manufactured by laser metal deposition. Intermetallics (2018). https://doi.org/10.1016/j.intermet.2017.11.013

    Article  Google Scholar 

  30. Patel, S., Keshavarz, M., Vlasea, M.: Challenges during laser powder bed fusion of a near-alpha titanium alloy-Ti-6242Si. In 2021 International Solid Freeform Fabrication Symposium. University of Texas at Austin (2021). https://doi.org/10.26153/tsw/17630

  31. Qiu, C., Adkins, N.J., Attallah, M.M.: Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4V. Mater. Sci. Eng., A (2013). https://doi.org/10.1016/j.msea.2013.04.099

    Article  Google Scholar 

  32. Dzogbewu, T.C.: Laser powder bed fusion of Ti6AI4V-xCu: Process parameters. J. Met. Mater. Miner. (2021). https://doi.org/10.14456/jmmm.2021.20

    Article  Google Scholar 

  33. Sun, J., Yang, Y., Wang, D.: Parametric optimization of selective laser melting for forming Ti6Al4V samples by Taguchi method. Opt. Laser Technol. (2013). https://doi.org/10.1016/j.optlastec.2012.12.002

    Article  Google Scholar 

  34. Kurzynowski, T., Chlebus, E., Kuźnicka, B., Reiner, J.: Parameters in selective laser melting for processing metallic powders. In High power laser materials processing: lasers, beam delivery, diagnostics, and applications, SPIE (2012). https://doi.org/10.1117/12.907292

  35. Munk, J., Breitbarth, E., Siemer, T., Pirch, N., Häfner, C.: Geometry effect on microstructure and mechanical properties in laser powder bed fusion of Ti-6Al-4V. Metals (2022). https://doi.org/10.3390/met12030482

    Article  Google Scholar 

  36. Ning, Y., Fuh, J.Y.H., Wong, Y.S., Loh, H.T.: An intelligent parameter selection system for the direct metal laser sintering process. Int. J. Prod. Res. (2004). https://doi.org/10.1080/00207540310001595873

    Article  Google Scholar 

  37. Zhang, Z., Yang, X., Song, F., Yao, X., Zhang, T., Liu, S., Tang, H.: Assessment of microstructural evolution and associated tensile behavior in thin-walled Ti6Al4V parts manufactured via selective laser melting. Mater. Charact. (2022). https://doi.org/10.1016/j.matchar.2022.112481

    Article  Google Scholar 

  38. Hu, J., Hu, Y., Lan, C., Zhang, Q., Jin, F., Li, W., Lin, X., Huang, W.: Cracking mechanism and control of Hastelloy X prepared by laser powder bed fusion. J. Market. Res. (2022). https://doi.org/10.1016/j.jmrt.2022.10.164

    Article  Google Scholar 

  39. Leung, C.L.A., Luczyniec, D., Guo, E., Marussi, S., Atwood, R.C., Meisnar, M., Saunders, P., Lee, P.D.: Quantification of interdependent dynamics during laser additive manufacturing using X-ray imaging informed multi-physics and multiphase simulation. Advanced Science (2022). https://doi.org/10.1002/advs.202203546

    Article  Google Scholar 

  40. Kong, C., Tuck, C.J., Ashcroft, I.A., Wildman, R.D., Hague, R.: High density Ti-6Al-4V via SLM processing: microstructure and mechanical properties. In: Solid freeform fabrication symposium (2011). http://utw10945.utweb.utexas.edu/Manuscripts/2011/2011-36-Kong.pdf. Accessed 17 Aug 2011

  41. Gong, H., Rafi, K., Gu, H., Starr, T., Stucker, B.: Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes. Addit. Manuf. (2014). https://doi.org/10.1016/j.addma.2014.08.002

    Article  Google Scholar 

  42. Wang, Y., Chen, C., Qi, Y., Zhu, H.: Residual stress reduction and surface quality improvement of dual-laser powder bed fusion. Addit. Manuf. (2023). https://doi.org/10.1016/j.addma.2023.103565

    Article  Google Scholar 

  43. Gloaguen, D., Girault, B., Courant, B., Dubos, P.-A., Moya, M.-J., Edy, F.O., Kornmeier, J.R.: Study of Residual Stresses in Additively Manufactured Ti-6Al-4V by Neutron Diffraction Measurements. Metall. Mater. Trans. (2019). https://doi.org/10.1007/s11661-019-05538-w

    Article  Google Scholar 

  44. Kajal, K., Mohan, S., De, A., DebRoy, T.: Rapid calculation of part scale residual stress – Powder bed fusion of stainless steel, and aluminum, titanium, nickel alloys. Addit. Manuf. (2022). https://doi.org/10.1016/j.addma.2022.103240

    Article  Google Scholar 

  45. Shipley, H., McDonnell, D., Culleton, M., Lupoi, R., O’Donnell, G., Trimble, D.: Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: A review. Int. J. Mach. Tools Manuf (2018). https://doi.org/10.1016/j.ijmachtools.2018.01.003

    Article  Google Scholar 

  46. Revankar, G.D., Shetty, R., Shrikantha, S., Rao, S.S., Gaitonde, V.N.: Selection of optimal process parameters in ball burnishing of titanium alloy. Mach. Sci. Technol. (2014). https://doi.org/10.1080/10910344.2014.897848

    Article  Google Scholar 

  47. Xu, W., Lui, E.W., Pateras, A., Qian, M., Brandt, M.: In situ tailoring microstructure in additively manufactured Ti-6Al-4V for superior mechanical performance. Acta Mater. (2017). https://doi.org/10.1016/j.actamat.2016.12.027

    Article  Google Scholar 

  48. Chen, X., Xie, X., Wu, H., Ji, X., Shen, H., Xue, M., Wu, H., Chao, Q., Fan, G., Liu, Q.: In-situ control of residual stress and its distribution in a titanium alloy additively manufactured by laser powder bed fusion. Mater. Charact. (2023). https://doi.org/10.1016/j.matchar.2023.112953

    Article  Google Scholar 

  49. Subeshan, B., Asmatulu, E., Ma, A.T., Bakir, M., Asmatulu, R.: Investigating mechanical and surface porosity values of high-performing 3D-printed titanium alloys along with stress-relieving heat treatments. Int. J. Adv. Manuf. Technol. (2023). https://doi.org/10.1007/s00170-023-12552-1

    Article  Google Scholar 

  50. Chen, J., Fabijanic, D., Zhang, T., Lui, E.W., Brandt, M., Xu, W.: Deciphering the transformation pathway in laser powder-bed fusion additive manufacturing of Ti-6Al-4V alloy. Addit. Manuf. (2022). https://doi.org/10.1016/j.addma.2022.103041

    Article  Google Scholar 

  51. Liu, J., Ye, J., Silva Izquierdo, D., Vinel, A., Shamsaei, N., Shao, S.: A review of machine learning techniques for process and performance optimization in laser beam powder bed fusion additive manufacturing. J. Intell. Manuf. (2023). https://doi.org/10.1007/s10845-022-02012-0

    Article  Google Scholar 

  52. Miya, H., du-Preez, W., Monaheng, L.: High cycle fatigue performance of TI6AL4V (ELI) specimens produced with inherent laser powder bed fusion surface roughness. S. Afr. J. Ind. Eng. 32(3), 248–257 (2021)

    Google Scholar 

  53. Jurg, M., Medvedev, A.E., Yan, W., Molotnikov, A.: Surface improvement of laser powder bed fusion processed Ti6Al4V for fatigue applications. Addit. Manuf. Lett. (2022). https://doi.org/10.1016/j.addlet.2022.100070

    Article  Google Scholar 

  54. Omiyale, B.O., Olugbade, T.O., Abioye, T.E., Farayibi, P.K.: Wire arc additive manufacturing of aluminium alloys for aerospace and automotive applications: A review. Mater. Sci. Technol. (2022). https://doi.org/10.1080/02670836.2022.2045549

    Article  Google Scholar 

  55. Mooraj, S., Dong, J., Xie, K.Y., Chen, W.: Formation of printing defects and their effects on mechanical properties of additively manufactured metal alloys. J. Appl. Phys. (2022). https://doi.org/10.1063/5.0132137

    Article  Google Scholar 

  56. Prandi, G.V., Rodrigues, J.F., Valentim, M., Sangali, M., Starck, L.F., JulianoSoyama, J., Caram, R.: HYbrid titanium alloys produced by laser powder bed fusion using Ti-5553 and Ti–42Nb powder recycling. J. Market. Res. (2023). https://doi.org/10.1016/j.jmrt.2023.11.208

    Article  Google Scholar 

  57. Wei, K., Li, F., Huang, G., Liu, M., Deng, J., He, C., Zeng, X.: Multi-laser powder bed fusion of Ti–6Al–4V alloy: defect, microstructure, and mechanical property of overlap region. Mater. Sci. Eng., A (2021). https://doi.org/10.1016/j.msea.2020.140644

    Article  Google Scholar 

  58. Wu, W., He, G., Huang, J., Zhang, A., Liu, X., Ouyang, Z., Sun, Z., Guan, L., Chu, S., Li, P., Jiang, P.: Influence of electrochemically charged hydrogen on mechanical properties of Ti–6Al–4V alloy additively manufactured by laser powder-bed fusion (L-PBF) process. Mater. Sci. Eng., A (2022). https://doi.org/10.1016/j.msea.2022.144339

    Article  Google Scholar 

  59. Liu, J., Li, G., Sun, Q., Li, H., Sun, J., Wang, X.: Understanding the effect of scanning strategies on the microstructure and crystallographic texture of Ti-6Al-4V alloy manufactured by laser powder bed fusion. J. Mater. Process. Technol. (2022). https://doi.org/10.1016/j.jmatprotec.2021.117366

    Article  Google Scholar 

  60. Amano, H., Ishimoto, T., Suganuma, R., Aiba, K., Sun, S.H., Ozasa, R., Nakano, T.: Effect of a helium gas atmosphere on the mechanical properties of Ti-6Al-4V alloy built with laser powder bed fusion: A comparative study with argon gas. Addit. Manuf. (2021). https://doi.org/10.1016/j.addma.2021.102444

    Article  Google Scholar 

  61. Etesami, S.A., Fotovvati, B., Asadi, E.: Heat treatment of Ti-6Al-4V alloy manufactured by laser-based powder-bed fusion: Process, microstructures, and mechanical properties correlations. J. Alloy. Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.162618

    Article  Google Scholar 

  62. Pazhanivel, B., Sathiya, P., Sozhan, G.: Ultra-fine bimodal (α+β) microstructure induced mechanical strength and corrosion resistance of Ti-6Al-4V alloy produced via laser powder bed fusion process. Opt. Laser Technol. (2020). https://doi.org/10.1016/j.optlastec.2019.106017

    Article  Google Scholar 

  63. Brika, S.E., Letenneur, M., Dion, C.A., Brailovski, V.: Influence of particle morphology and size distribution on the powder flowability and laser powder bed fusion manufacturability of Ti-6Al-4V alloy. Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2019.100929

    Article  Google Scholar 

  64. Peterson, J., Issariyapat, A., Umeda, J., Kondoh, K.: The effects of heat treatment and carbon content on the microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V with dissolved TiC particles. J. Alloy. Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.165930

    Article  Google Scholar 

  65. Luo, Q., Yin, L., Simpson, T.W., Beese, A.M.: Effect of processing parameters on pore structures, grain features, and mechanical properties in Ti-6Al-4V by laser powder bed fusion. Addit. Manuf. (2022). https://doi.org/10.1016/j.addma.2022.102915

    Article  Google Scholar 

  66. Soltani-Tehrani, A., Isaac, J.P., Tippur, H.V., Silva, D.F., Shao, S., Shamsaei, N.: Ti-6Al-4V powder reuse in laser powder bed fusion (L-PBF): The effect on porosity, microstructure, and mechanical behavior. Int. J. Fatigue (2023). https://doi.org/10.1016/j.ijfatigue.2022.107343

    Article  Google Scholar 

  67. Nandwana, P., Lee, Y., Ranger, C., Rollett, A.D., Dehoff, R.R., Babu, S.S.: Post-processing to modify the α phase micro-texture and β phase grain morphology in Ti-6Al-4V fabricated by powder bed electron beam melting. Metall. Mater. Trans. A. (2019). https://doi.org/10.1007/s11661-019-05247-4

    Article  Google Scholar 

  68. Vrancken, B., Thijs, L., Kruth, J.P., Van-Humbeeck, J.: Heat treatment of Ti6Al4V produced by selective laser melting: Microstructure and mechanical properties. J. Alloy. Compd. (2012). https://doi.org/10.1016/j.jallcom.2012.07.022

    Article  Google Scholar 

  69. Xing, L.L., Zhang, W.J., Zhao, C.C., Gao, W.Q., Shen, Z.J., Liu, W.: Influence of powder bed temperature on the microstructure and mechanical properties of Ti-6Al-4V alloy fabricated via laser powder bed fusion. Materials (2021). https://doi.org/10.3390/ma14092278

    Article  Google Scholar 

  70. Chen, B., Wu, Z., Yan, T., He, Z., Sun, B., Guo, G., Wu, S.: Experimental study on mechanical properties of laser powder bed fused Ti-6Al-4V alloy under post-heat treatment. Eng. Fract. Mech. (2022). https://doi.org/10.1016/j.engfracmech.2022.108264

    Article  Google Scholar 

  71. Zhao, R., Chen, C., Wang, W., Cao, T., Shuai, S., Xui, S., Hu, T., Liao, H., Wang, J., Ren, Z.: On the role of volumetric energy density in the microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V alloy. Addit. Manuf. (2022). https://doi.org/10.1016/j.addma.2022.102605

    Article  Google Scholar 

  72. Shi, W., Li, J., Jing, Y., Liu, Y., Lin, Y., Han, Y.: Combination of scanning strategies and optimization experiments for laser beam powder bed fusion of Ti-6Al-4V titanium alloys. Appl. Sci. (2022). https://doi.org/10.3390/app12136653

    Article  Google Scholar 

  73. Dietrich, K., Diller, J., Dubiez-Le Goff, S., Bauer, D., Forêt, P., Witt, G.: The influence of oxygen on the chemical composition and mechanical properties of Ti-6Al-4V during laser powder bed fusion (L-PBF). Addit. Manuf. (2020). https://doi.org/10.1016/j.addma.2019.100980

    Article  Google Scholar 

  74. Leuders, S., Thöne, M., Riemer, A., Niendorf, T., Tröster, T., Richard, H., Maier, H.: On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance. Int. J. Fatigue. (2013). https://doi.org/10.1016/j.ijfatigue.2012.11.011

    Article  Google Scholar 

  75. Peng, H., Wu, S., Kan, W.H., Lim, S.C.V., Zhu, Y., Huang, A.: Rapid hardening response of ultra-hard Ti-6Al-2Sn-4Zr-6Mo alloy produced by laser powder bed fusion. Scripta Mater. (2023). https://doi.org/10.1016/j.scriptamat.2022.115209

    Article  Google Scholar 

  76. Zhou, X., Xu, D., Geng, S., Fan, Y., Liu, M., Wang, Q., Wang, F.: Mechanical properties, corrosion behavior and cytotoxicity of Ti-6Al-4V alloy fabricated by laser metal deposition. Mater. Charact. (2021). https://doi.org/10.1016/j.matchar.2021.111302

    Article  Google Scholar 

  77. Zhang, L.-C., Liu, Y., Li, S., Hao, Y.: Additive manufacturing of titanium alloys by electron beam melting: A review. Adv. Eng. Mater. (2017). https://doi.org/10.1002/adem.201700842

    Article  Google Scholar 

  78. Voisin, T., Calta, N.P., Khairallah, S.A., Forien, J.-B., Balogh, L., Cunningham, R.W., Wang, Y.M.: Defects-dictated tensile properties of selective laser melted Ti-6Al-4V. Mater. Des. (2018). https://doi.org/10.1016/j.matdes.2018.08.004

    Article  Google Scholar 

  79. Farhang, B., Tanrikulu, A.A., Ganesh-Ram, A., Durlov, S.H., Shayesteh, M.N.: Innovative fabrication design for in situ martensite decomposition and enhanced mechanical properties in laser powder bed fused Ti6Al4V alloy. J. Manuf. Mater. Process (2023). https://doi.org/10.3390/jmmp7060226

    Article  Google Scholar 

  80. Sangalia, M., Cremascob, A., Soyamaa, J., Carama, R., Contier, R.J.: Selective laser melting of Ti-6Al-4V alloy: Correlation between processing parameters, microstructure and corrosion properties. Mater. Res. (2023). https://doi.org/10.1590/1980-5373-MR-2023-0055

    Article  Google Scholar 

  81. Ganesh-Ram, A., Tanrikulu, A.A., Loya, O.V., Davidson, P., Ameri, A.: In-situ reinforcement processing for laser powder bed fused Ti64 parts. Solid Freeform Fabrication Symposium (2023).

  82. Tsai, M.T., Chen, Y.W., Chao, C.Y., Jang, J.S., Tsai, C.C., Su, Y.L., Kuo, C.N.: Heat-treatment effects on mechanical properties and microstructure evolution of Ti-6Al-4V alloy fabricated by laser powder bed fusion. J. Alloy. Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.152615

    Article  Google Scholar 

  83. Knezevic, M., Ghorbanpour, S., Ferreri, N.C., Riyad, I.A., Kuzdal, A.D., Paramore, J.D., Vogel, S.C., McWilliams, B.A.: Thermo-hydrogen refinement of microstructure to improve mechanical properties of Ti–6Al–4V fabricated via laser powder bed fusion. Mater. Sci. Eng., A (2021). https://doi.org/10.1016/j.msea.2021.140980

    Article  Google Scholar 

  84. Verma, P.K., Warghane, S., Nichul, U., Kumar, P., Dhole, A., Hiwarkar, V.: Effect of boron addition on microstructure, hardness and wear performance of Ti-6Al-4 V alloy manufactured by laser powder bed fusion additive manufacturing. Mater. Charact. (2021). https://doi.org/10.1016/j.matchar.2020.110848

    Article  Google Scholar 

  85. Fan, S., He, B., Liu, M.: Effect of pulse current density on microstructure of Ti-6Al-4V alloy by laser powder bed fusion. Metals (2022). https://doi.org/10.3390/met12081327

    Article  Google Scholar 

  86. Fereiduni, E., Ghasemi, A., Elbestawi, M.: Unique opportunities for microstructure engineering via trace B4C addition to Ti-6Al-4V through laser powder bed fusion process: As-built and heat-treated scenarios. Addit. Manuf. (2022). https://doi.org/10.1016/j.addma.2021.102557

    Article  Google Scholar 

  87. Dareh, B.A., Nafisi, S., Ebendorff-Heidepriem, H., Ghomashchi, R.: Microstructural development of Ti-6Al-4V alloy via powder metallurgy and laser powder bed fusion. Metals (2022). https://doi.org/10.3390/met12091462

    Article  Google Scholar 

  88. Jimenez, E.H., Kreitcberg, A., Moquin, E., Brailovski, V.: Influence of post-processing conditions on the microstructure, static, and fatigue resistance of laser powder bed fused Ti-6Al-4V components. J. Manuf. Mater. Process. (2022). https://doi.org/10.3390/jmmp6040085

    Article  Google Scholar 

  89. Andrews, C., Heo, T.W., Shi, R., Başgül, C., Kurtz, S., Matthews, M.J., Taheri, M.L.: Interplay of strain and phase evolution of laser powder bed fusion Ti–6Al–4V. Mater. Sci. Eng., A (2022). https://doi.org/10.1016/j.msea.2022.143860

    Article  Google Scholar 

  90. Beese, A.M., Carroll, B.E.: Review of mechanical properties of Ti-6Al-4V made by laser-based additive manufacturing using powder feedstock. Miner. Met. Mater. Soc. (2016). https://doi.org/10.1007/s11837-015-1759-z

    Article  Google Scholar 

  91. Shunyu Liu, S., Shin, Y.C.: Additive manufacturing of Ti6Al4V alloy: A review. Mater. Des. (2019). https://doi.org/10.1016/j.matdes.2018.107552

    Article  Google Scholar 

  92. Günther, J., Krewerth, D., Lippmann, T., Leuders, S., Tröster, T., Weidner, A., Biermann, H., Niendorf, T.: Fatigue life of additively manufactured Ti–6Al–4V in the very high cycle fatigue regime. Int. J. Fatigue (2017). https://doi.org/10.1016/j.ijfatigue.2016.05.018

    Article  Google Scholar 

  93. Tammas-Williams, S., Withers, P.J., Todd, I., Prangnell, P.B.: The influence of porosity on fatigue crack initiation in additively manufactured titanium components. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-06504-5

    Article  Google Scholar 

  94. Kasperovich, J.G., Hausmann, J.: Improvement of fatigue resistance and ductility of Ti-6Al-4V processed by selective laser melting. J. Mater. Process. Technol. (2015). https://doi.org/10.1016/J.JMATPROTEC.2015.01.025

    Article  Google Scholar 

  95. Fleishel, R., Ferrell, W., TerMaath, S.: Fatigue-damage initiation at process introduced internal defects in electron-beam-melted Ti-6Al-4V. Metals (2023). https://doi.org/10.3390/met13020350

    Article  Google Scholar 

  96. Johnsen, A.R., Petersen, J.E., Pedersen, M.M., Yildirim, H.C.: Factors affecting the fatigue strength of additively manufactured Ti-6Al-4V parts. Weld World (2024). https://doi.org/10.1007/s40194-023-01604-5

    Article  Google Scholar 

  97. Nguyen, H.D., Pramanik, A., Basak, A.K., Dong, Y., Prakash, C., Debnath, S., Shankar, S., Jawahir, I.S., Dixit, S., Buddhi, D.: A critical review on additive manufacturing of Ti-6Al-4V alloy: microstructure and mechanical properties. J. Market. Res. (2022). https://doi.org/10.1016/j.jmrt.2022.04.055

    Article  Google Scholar 

  98. Harun, W.S.W., Manam, N.S., Kamariah, M.S.I.N., Sharif, S., Zulkifly, A.H., Ahmad, I., Miura, H.: A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications. Powder Technol. (2018). https://doi.org/10.1016/j.powtec.2018.03.010

    Article  Google Scholar 

  99. Chern, A.H., Nandwana, P., Yuanc, T., Kirka, M.M., Dehoff, R.R., Liawd, P.K., Duty, C.E.: A review on the fatigue behavior of Ti-6Al-4V fabricated by electron beam melting additive manufacturing. Int. J. Fatigue (2019). https://doi.org/10.1016/j.ijfatigue.2018.09.022

    Article  Google Scholar 

  100. Teixeira, O., Silva, F.J.G., Ferreira, L.P., Atzeni, E.: A review of heat treatments on improving the quality and residual stresses of the Ti–6Al–4V parts produced by additive manufacturing. Metals (2020). https://doi.org/10.3390/met10081006

    Article  Google Scholar 

  101. Eyzat, Y., Chemkhi, M., Portella, Q., Gardan, J., Remond, J., Retraint, D.: Characterization and mechanical properties of As-Built SLM Ti-6Al-4V subjected to surface mechanical post-treatment. Procedia CIRP (2019). https://doi.org/10.1016/j.procir.2019.03.298

    Article  Google Scholar 

  102. Liu, Z., He, B., Lyu, T., Zou, Y.: A review on additive manufacturing of titanium alloys for aerospace applications: Directed energy deposition and beyond Ti-6Al-4V. Miner. Met. Mater. Soc. (2021). https://doi.org/10.1007/s11837-021-04670-6

    Article  Google Scholar 

  103. Gorsse, S., Hutchinson, C., Gouné, M., Banerjee, R.: Additive manufacturing of metals: a brief review of the characteristic microstructures and properties of steels, Ti-6Al-4V and high-entropy alloys. Sci. Technol. Adv. Mater. (2017). https://doi.org/10.1080/14686996.2017.1361305

    Article  Google Scholar 

  104. Gu, C., Tian, Z., Zhao, J., Wang, Y.: Investigation of microstructure and tribological property of Ti-6Al-4V alloy by laser shock peening processing. https://doi.org/10.1007/s00170-023-12354-5

  105. Zhang, K., Kan, W.H., Liu, Y., Gao, X., Zhu, Y., Lim, S.C.V., Peng, H., Huang, A.: Microstructure control by heat treatment for better ductility and toughness of Ti-6Al-4V produced by laser powder bed fusion. Aust. J. Mech. Eng. (2021). https://doi.org/10.1080/14484846.2021.2004654

    Article  Google Scholar 

  106. Ter Haar, G.M., Becker, T.H.: Selective laser melting produced Ti-6Al-4V: Post-process heat treatments to achieve superior tensile properties. Materials (2018). https://doi.org/10.3390/ma11010146

    Article  Google Scholar 

  107. Su, J., Jiang, F., Li, J., Tan, C., Xu, Z., Xie, H., Liu, J., Tang, J., Fu, D., Zhang, H., Teng, J.: Phase transformation mechanisms, microstructural characteristics and mechanical performances of an additively manufactured Ti-6Al-4V alloy under dual-stage heat treatment. Mater. Des. (2022). https://doi.org/10.1016/j.matdes.2022.111240

    Article  Google Scholar 

  108. Ji, X., Xie, H., Su, J., Jiang, F., Teng, J., Zhang, H., Guo, B.: Phase transformation behaviors and dislocation evolutions of an additively manufactured Ti-6Al-4V alloy under annealing treatment. Metals (2023). https://doi.org/10.3390/met13061061

    Article  Google Scholar 

  109. Kouprianoff, D., du Preez, W.: Reducing time and cost of the heat treatment post-processing of additively manufactured Ti6Al4V. Mater. Today Commun. (2023). https://doi.org/10.2139/ssrn.4380136

    Article  Google Scholar 

  110. Wei, S., Zhang, J., Zhang, L., Zhang, Y., Song, B., Wang, X., Fan, J., Liu, Q., Shi, Y.: Laser powder bed fusion additive manufacturing of NiTi shape memory alloys: a review. Int. J. Extreme Manuf. (2023). https://doi.org/10.1088/2631-7990/acc7d9

    Article  Google Scholar 

  111. Omiyale, B.O.: Influence of post-processing manufacturing techniques on wire arc additive manufacturing of Ti-6Al-4V components: A brief critical assessment. CRC Press (Taylor and Francis) (2024). https://doi.org/10.1201/9781003363415-9

    Book  Google Scholar 

  112. Patel, F.P., Patel, B.K., Badheka, V.J.: Welding processes for additive manufacturing—processes, materials, and defects. Recent Adv. Manuf. Process. Syst. (2022). https://doi.org/10.1007/978-981-16-7787-8_80

    Article  Google Scholar 

  113. Wu, Z., Asherloo, M., Jiang, R., Delpazir, M.H., Sivakumar, N., Paliwal, M., Capone, J., Gould, B., Rollett, A., Mostafaei, A.: Study of printability and porosity formation in laser powder bed fusion-built hydride-dehydride (HDH) Ti-6Al-4V. Addit. Manuf. (2021). https://doi.org/10.1016/j.addma.2021.102323

    Article  Google Scholar 

  114. Power, J.J., Humphreys, O., Hartnett, M., Egan, D., Dowling, D.P.: Application of in situ process monitoring to optimise laser parameters during laser powder bed fusion printing of Ti-6Al-4V parts with overhang structures. Int. J. Adv. Manuf. Technol. (2023). https://doi.org/10.1007/s00170-023-12794-z

    Article  Google Scholar 

  115. Omiyale, B.O., Ogedengbe, I.I., Olugbade, T.O., Farayibi, P.K.: Corrosion performance of wire arc additive manufacturing of stainless steel: a brief critical assessment. 3D Print. Addit. Manuf. (2023). https://doi.org/10.1089/3dp.2022.0253

    Article  Google Scholar 

  116. Omiyale, B. O., Ogedengbe, I. I., Olugbade, T.O., Osasona, A.B., Farayibi, P. K.: Influence of manufacturing parameters on the improvement of surface quality of wire arc additive manufacturing of aluminium alloys. CRC Press, Taylor and Francis (2024). https://doi.org/10.1201/9781003363415-9

  117. Farayibi, P.K., Omiyale, B.O.: Mechanical behaviour of polylactic acid parts fabricated via material extrusion process: A Taguchi-Grey relational analysis approach. Int. J. Eng. Res. Afr. (2020). https://doi.org/10.4028/www.scientific.net/jera.46.32

    Article  Google Scholar 

  118. Azarniya, A., Colera, X.G., Mirzaali, M.J., Sovizi, S., Bartolomeu, F., Weglowski, M.S., Wits, W.W., Yap, C.Y., Ahn, J., Miranda, G., Silva, F.S., Hosseini, H.R.M., Ramakrishna, S., Zadpoor, A.A.: Additive manufacturing of Ti-6Al-4V parts through laser metal deposition (LMD): Process, microstructure, and mechanical properties. J. Alloy. Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.04.255

    Article  Google Scholar 

  119. Ogbeyemi, A., Okoh, I., Imuero, O., Ibhadode, O., Akpobi, J.: Load prediction on metal forming process (tube sinking) using finite element method. Int. J. Adv. Manuf. Technol. (2021). https://doi.org/10.1007/s00170-021-06907-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B.O.: Conceptualization, literature review, and article draft preparation. I.O.: Literature review, reviewing, and editing. T.O.: Reviewing and editing, and literature review. A.B.: Reviewing and editing, and literature review. A.O.: Reviewing and editing. P.K.: Reviewing and editing, and literature review. All authors equally helped to write this article.

Corresponding author

Correspondence to Babatunde Olamide Omiyale.

Ethics declarations

Disclosure Statement

No potential conflict of interest was reported by the authors.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omiyale, B.O., Ogedengbe, I.I., Olugbade, T.O. et al. Laser Powder Bed Fusion of Ti-6Al-4 V Alloys for the Production of Defect-Free AM Parts: A Recent Update. Lasers Manuf. Mater. Process. (2024). https://doi.org/10.1007/s40516-024-00259-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40516-024-00259-4

Keywords

Navigation