Skip to main content
Log in

The Influence of Beam Shape on the Single-Track Formation of Pure Zn Towards the Additive Manufacturing of Battery Electrodes

  • Research
  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Additive Manufacturing (AM) can provide several benefits for battery manufacturing by combining geometrical flexibility and controlled porosity. Zinc is an appealing battery material because it is an abundant metal with relatively low cost, and potential recyclability. However, the processing of Zn and its alloys through melting based AM processes is cumbersome. The use of novel ring-shaped beams can widen the processing window in Laser Powder Bed Fusion (LPBF), which is an appealing technology to produce electrodes. In this work, single-track formation during the LPBF of pure Zn with Gaussian and doughnut shaped beams was studied. In a wide range of experiments, geometrical attributes were observed through cross-sectional analyses and high-speed imaging. The conditions that range from surface heating to conduction melting and keyholing were determined. The feasibility of producing thin walls for anodes was also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure. 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure. 13
Figure 14

Similar content being viewed by others

Data Availability

Data obtained in the present manuscript will be provided by the authors upon reasonable request.

References

  1. Arbabzadeh, M., Sioshansi, R., Johnson, J.X., Keoleian, G.A.: The role of energy storage in deep decarbonization of electricity production. Nat. Commun. 10(1) (2019). https://doi.org/10.1038/s41467-019-11161-5

  2. Li, M., Lu, J., Chen, Z., Amine, K.: 30 Years of Lithium-Ion Batteries. Adv. Mater. 30(33) (2018). https://doi.org/10.1002/adma.201800561. Wiley-VCH Verlag.

  3. Christensen, P.A., et al.: Risk management over the life cycle of lithium-ion batteries in electric vehicles. Renew. Sustain. Energy Rev. 148 (2021). https://doi.org/10.1016/j.rser.2021.111240.

  4. Service, R.F.: Zinc aims to beat lithium batteries at storing energy. Science 372(28), 6545 (2021). https://doi.org/10.1126/science.372.6545.890

    Article  Google Scholar 

  5. Iturrondobeitia, M., Akizu-Gardoki, O., Amondarain, O., Minguez, R., Lizundia, E.: Environmental Impacts of aqueous zinc ion batteries based on life cycle assessment. Adv. Sustain. Syst. 6(1) (2022). https://doi.org/10.1002/adsu.202100308.

  6. United Nations, The 2030 Agenda and the Sustainable Development Goals: An opportunity for Latin America and the Caribbean, (Published 01/2018). available at: https://repositorio.cepal.org/server/api/core/bitstreams/b3cb86e6-9b9e-4b9e-9044-26d89e8f17e0/content. (Accessed 17/12/2023)

  7. Borchers, N., Clark, S., Horstmann, B., Jayasayee, K., Juel, M., Stevens, P.: Innovative zinc-based batteries. J. Power Sourc. 484 (2021). https://doi.org/10.1016/j.jpowsour.2020.229309. Elsevier B.V.

  8. Shi, Y., et al.: An Overview and Future Perspectives of Rechargeable Zinc Batteries. Small 16(23) (2020). https://doi.org/10.1002/smll.202000730. Wiley-VCH Verlag

  9. Luo, H., Liu, B., Yang, Z., Wan, Y., Zhong, C.: The trade-offs in the design of reversible zinc anodes for secondary alkaline batteries. Electrochem. Energy Rev. 5(1), 187–210 (2022). https://doi.org/10.1007/s41918-021-00107-5. (Springer)

    Article  CAS  Google Scholar 

  10. Yufit, V., et al.: Operando Visualization and multi-scale tomography studies of Dendrite formation and dissolution in Zinc batteries. Joule. 3(2), 485–502 (2019). https://doi.org/10.1016/j.joule.2018.11.002

    Article  Google Scholar 

  11. Liu, M. B., Cook, G. M., & Yao, N. P. (1981). Passivation of zinc anodes in KOH electrolytes. Journal of the Electrochemical Society, 128(8), 1663. https://doi.org/10.1149/1.2127707

  12. Bockelmann, M., Becker, M., Reining, L., Kunz, U., Turek, T.: Passivation of Zinc Anodes in Alkaline Electrolyte: Part I. determination of the starting point of Passive Film formation. J. Electrochem. Soc. 165(13), A3048–A3055 (2018). https://doi.org/10.1149/2.0331813jes

    Article  CAS  Google Scholar 

  13. Christensen, M.K., Mathiesen, J.K., Simonsen, S.B., Norby, P.: Transformation and migration in secondary zinc-air batteries studied by: In situ synchrotron X-ray diffraction and X-ray tomography. J. Mater. Chem. A Mater. 7(11), 6459–6466 (2019). https://doi.org/10.1039/c8ta11554k

    Article  CAS  Google Scholar 

  14. Chen, J., et al.: Challenges and perspectives of hydrogen evolution-free aqueous Zn-Ion batteries. Energy Storage Mater. 59, 102767 (2023). https://doi.org/10.1016/j.ensm.2023.04.006

    Article  Google Scholar 

  15. Zhang, J., et al.: 3D-printed functional electrodes towards Zn-Air batteries. Mater. Today Energy. 16 (2020). https://doi.org/10.1016/j.mtener.2020.100407.

  16. Parker Joseph, F., et al.: Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Sci. (1979) 356, 415–418 (2017)

    CAS  Google Scholar 

  17. Parker, J.F., Chervin, C.N., Nelson, E.S., Rolison, D.R., Long, J.W.: Wiring zinc in three dimensions re-writes battery performance - Dendrite-free cycling. Energy Environ. Sci. 7(3), 1117–1124 (2014). https://doi.org/10.1039/c3ee43754j

    Article  CAS  Google Scholar 

  18. Guo, N., et al.: A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods 6(9) (2022). https://doi.org/10.1002/smtd.202200597. John Wiley and Sons Inc.

  19. Costa, C.M., Gonçalves, R., Lanceros-Méndez, S.: Recent advances and future challenges in printed batteries. Energy Storage Mater. 28, 216–234 (2020). https://doi.org/10.1016/j.ensm.2020.03.012

    Article  Google Scholar 

  20. Grasso, M., Demir, A.G., Previtali, B., Colosimo, B.M.: In situ monitoring of selective laser melting of zinc powder via infrared imaging of the process plume. Robot Comput. Integr. Manuf. 49, 229–239 (2018). https://doi.org/10.1016/j.rcim.2017.07.001

    Article  Google Scholar 

  21. Wen, P., et al.: Laser additive manufacturing of Zn porous scaffolds: Shielding gas flow, surface quality and densification. J. Mater. Sci. Technol. 35(2), 368–376 (2019). https://doi.org/10.1016/j.jmst.2018.09.065

    Article  MathSciNet  CAS  Google Scholar 

  22. Montani, M., Demir, A.G., Mostaed, E., Vedani, M., Previtali, B.: Processability of pure zn and pure fe by SLM for biodegradable metallic implant manufacturing. Rapid Prototyp. J. 23(3), 514–523 (2017). https://doi.org/10.1108/RPJ-08-2015-0100

    Article  Google Scholar 

  23. Ruvalcaba, B.E., Arrieta, E., Escarcega, A.H., Medina, F., Wicker, R.B.: Manufacturing Process and Parameters Development for Water-atomized Zinc Powder for Selective Laser Melting Fabrication (n.d.).

  24. Demir, A.G., Monguzzi, L., Previtali, B.: Selective laser melting of pure zn with high density for biodegradable implant manufacturing. Addit. Manuf. 15, 20–28 (2017). https://doi.org/10.1016/j.addma.2017.03.004

    Article  CAS  Google Scholar 

  25. Caprio, L., Guaglione, F., Demir, A.G.: Development of single point exposure strategy to suppress vapour formation during the laser powder Bed Fusion of Zinc and its alloys. In: Lecture Notes in Mechanical Engineering, pp. 107–129. Springer Science and Business Media Deutschland GmbH (2022). https://doi.org/10.1007/978-3-030-82627-7_7

  26. Guaglione, F., Caprio, L., Previtali, B., Demir, A.G.: Single point exposure LPBF for the production of biodegradable Zn-alloy lattice structures. Addit. Manuf. 48 (2021). https://doi.org/10.1016/j.addma.2021.102426.

  27. Grünewald, J., Gehringer, F., Schmöller, M., Wudy, K.: Influence of ring-shaped beam profiles on process stability and productivity in laser-based powder bed fusion of AISI 316L. Met. (Basel). 11(12) (2021). https://doi.org/10.3390/met11121989.

  28. Galbusera, F., Caprio, L., Previtali, B., Demir, A.G.: The influence of novel beam shapes on melt pool shape and mechanical properties of LPBF produced Al-alloy. J. Manuf. Process 85, 1024–1036 (2023). https://doi.org/10.1016/j.jmapro.2022.12.007

    Article  Google Scholar 

  29. Caprio, L., Guaglione, F., Demir, A.G.: Development of single point exposure strategy to suppress vapour formation during the laser powder Bed Fusion of Zinc and its alloys. In: Selected Topics in Manufacturing, pp. 107–129. Springer (2022)

  30. Fabbro, R.: Depth dependence and keyhole stability at threshold, for different laser welding regimes. Appl. Sci. (Switzerland). 10(4) (2020). https://doi.org/10.3390/app10041487.

  31. Gan, Z., et al.: Universal scaling laws of keyhole stability and porosity in 3D printing of metals. Nat. Commun. 12(1), 2379 (2021). https://doi.org/10.1038/s41467-021-22704-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Werner, W.S.M., Glantschnig, K., Ambrosch-Draxl, C.: Optical constants and inelastic electron-scattering data for 17 elemental metals. J. Phys. Chem. Ref. Data 38(4), 1013–1092 (2009). https://doi.org/10.1063/1.3243762

    Article  CAS  Google Scholar 

  33. Mazzoleni, L., Demir, A.G., Caprio, L., Pacher, M., Previtali, B.: Real-time observation of melt pool in selective laser melting: spatial, temporal and wavelength resolution criteria. IEEE Trans. Instrum. Meas. 69(4), 1179–1190 (2019)

    Article  Google Scholar 

  34. Demir, A.G., Mazzoleni, L., Caprio, L., Pacher, M., Previtali, B.: Complementary use of pulsed and continuous wave emission modes to stabilize melt pool geometry in laser powder bed fusion. Opt. Laser Technol. 113, 15 (2019). https://doi.org/10.1016/j.optlastec.2018.12.005

    Article  CAS  Google Scholar 

  35. Ko, J.S., Geltmacher, A.B., Hopkins, B.J., Rolison, D.R., Long, J.W., Parker, J.F.: Robust 3D zn sponges enable high-power, energy-dense alkaline batteries. ACS Appl. Energy Mater. 2(1), 212–216 (2019). https://doi.org/10.1021/acsaem.8b01946

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to nLight and Optoprim for providing the laser source used in the experimental activity. Raylase and Direct Machining Control are acknowledged for the technical support whilst BLM is thanked for providing the high speed imaging equipment. The authors would also like to acknowledge the Italian Ministry of Education, Research and Universities (MIUR) for the support via the National Plan for Recovery and Resilience (PNRR).

Funding

The project was supported by the Italian Ministry of Education, Research and Universities (MIUR) via the National Plan for Recovery and Resilience (PNRR).

Author information

Authors and Affiliations

Authors

Contributions

Chiara Baldi - Formal Analysis, Data Curation, Investigation, Writing – Original Draft Leonardo Caprio - Formal Analysis, Methodology, Investigation, Writing – Original Draft Ali Gokhan Demir - Project Administration, Supervision, Writing – Original Draft Craig Milroy - Conceptualization, Writing – Review & Editing Barbara Previtali - Writing – Review & Editing, Funding Acquisition, Resources, Supervision

Corresponding author

Correspondence to Leonardo Caprio.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldi, C., Caprio, L., Milroy, C. et al. The Influence of Beam Shape on the Single-Track Formation of Pure Zn Towards the Additive Manufacturing of Battery Electrodes. Lasers Manuf. Mater. Process. 11, 125–142 (2024). https://doi.org/10.1007/s40516-023-00237-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-023-00237-2

Keywords

Navigation