Skip to main content
Log in

Inverse Model for Simultaneously Estimating Material Parameters and Absorption Coefficient in a Laser-Irradiated Sheet

  • Research
  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

In this work, a heuristic inverse method for simultaneous estimation of thermal conductivity, specific heat, density and absorptivity in a laser-irradiated sheet is proposed. A fast forward model, which can predict the temperature evolution during laser heating is built as the foundation of the inverse model. The forward model comprises of a proper analytical modelling considering three-dimensional heat conduction equation with coupled conduction–convection boundary conditions. The proposed inverse method tries to change the unknown parameters in each step till the predicted temperature close to the recorded temperature. Two different examples of a heating process on aluminium alloy (Al 6061-T6) are considered to demonstrate the efficacy of the inverse method. The accuracy of the inverse method is assessed by simulated experimental temperatures considering temperature-dependent properties in the forward model. The results show that the inversely recovered parameters are sufficiently accurate in calculating the surface temperature at different process conditions. The suggested heuristic inverse method has the potential for the fast computation of parameters for a desired laser heating temperature without needing arduous experiments and unproductive finite element method (FEM) analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

References

  1. Dubey, A.K., Yadava, V.: Laser beam machining—A review. Int. J. Mach. Tools Manuf. 48(6), 609–628 (2008)

    Article  Google Scholar 

  2. Dixit, U.S., Joshi, S.N., Kant, R.: Laser forming systems: a review. Int. J. Mechatronics Manuf. Syst. 8(3–4), 160–205 (2015)

    Google Scholar 

  3. Kennedy, E., Byrne, G., Collins, D.N.: A review of the use of high power diode lasers in surface hardening. J. Mater. Process. Technol. 155, 1855–1860 (2004)

    Article  Google Scholar 

  4. Cao, X.J., Jahazi, M., Immarigeon, J.P., Wallace, W.: A review of laser welding techniques for magnesium alloys. J. Mater. Process. Technol. 171(2), 188–204 (2006)

    Article  Google Scholar 

  5. Draper, C.W., Poate, J.M.: Laser surface alloying. Int. Met. Rev. 30(1), 85–108 (1985)

    Article  Google Scholar 

  6. Chen, G.: Analytical solutions for temperature and thermal-stress modeling of solid material induced by repetitive pulse laser irradiation. Optik 135, 16–26 (2017)

    Article  Google Scholar 

  7. Kant, R., Joshi, S.N.: Thermo-mechanical studies on bending mechanism, bend angle and edge effect during multi-scan laser bending of magnesium M1A alloy sheets. J. Manuf. Process. 23, 135–148 (2016)

    Article  Google Scholar 

  8. Fetene, B.N., Kumar, V., Dixit, U.S., Echempati, R.: Numerical and experimental study on multi-pass laser bending of AH36 steel strips. Opt. Laser Technol. 99, 291–300 (2018)

    Article  Google Scholar 

  9. Nath, U., Yadav, V., Purohit, R.: Finite element analysis of AM30 magnesium alloy sheet in the laser bending process. Adv. Mater. Process. Technol. 8(2), 1803–1815 (2022)

  10. Cheng, P.J., Lin, S.C.: An analytical model for the temperature field in the laser forming of sheet metal. J. Mater. Process. Technol. 101(1–3), 260–267 (2000)

    Article  Google Scholar 

  11. Kyrsanidi, A.K., Kermanidis, T.B., Pantelakis, S.G.: An analytical model for the prediction of distortions caused by the laser forming process. J. Mater. Process. Technol. 104(1–2), 94–102 (2000)

    Article  Google Scholar 

  12. Peng, Q.: An analytical solution for a transient temperature field during laser heating a finite slab. Appl. Math. Model. 40(5–6), 4129–4135 (2016)

    Article  Google Scholar 

  13. Nath, U., Yadav, V.: Analytical modeling of temperature evolution and bend angle in laser forming of Al 6061–T6 sheets and its experimental analysis. Opt. Laser Technol. 154, 108307 (2022)

    Article  Google Scholar 

  14. Roder, H.M.: A transient hot wire thermal conductivity apparatus for fluids. J. Res. Natl. Bur. Stand. 86(5), 457 (1981)

    Article  Google Scholar 

  15. Gustafsson, S.E.: Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev. Sci. Instrum. 62(3), 797–804 (1991)

    Article  Google Scholar 

  16. Cahill, D.G.: Thermal conductivity measurement from 30 to 750 K: the 3ω method. Rev. Sci. Instrum. 61(2), 802–808 (1990)

    Article  Google Scholar 

  17. Lian, T.W., Kondo, A., Akoshima, M., Abe, H., Ohmura, T., Tuan, W.H., Naito, M.: Rapid thermal conductivity measurement of porous thermal insulation material by laser flash method. Adv. Powder Technol. 27(3), 882–885 (2016)

    Article  Google Scholar 

  18. Ozisik, M.N.: Inverse Heat Transfer: Fundamentals and Applications. CRC Press, New York (2000)

    Google Scholar 

  19. Colaço, M.J., Orlande, H.R., Dulikravich, G.S.: Inverse and optimization problems in heat transfer. J. Braz. Soc. Mech. Sci. Eng. 28, 1–24 (2006)

    Article  Google Scholar 

  20. Zhang, J., Bi, J., Chen, G.: Inverse estimation of the material parameters at metal surface irradiated by laser pulse. Optik 129, 108–117 (2017)

    Article  Google Scholar 

  21. Mishra, A., Dixit, U.S.: Determination of thermal diffusivity of the material, absorptivity of the material and laser beam radius during laser forming by inverse heat transfer. J. Mach. Forming Technol. 5(3/4), 207 (2013)

    Google Scholar 

  22. Sun, S.: Simultaneous reconstruction of thermal boundary condition and physical properties of participating medium. Int. J. Therm. Sci. 163, 106853 (2021)

    Article  Google Scholar 

  23. Cui, M., Li, N., Liu, Y., Gao, X.: Robust inverse approach for two-dimensional transient nonlinear heat conduction problems. J. Thermophys. Heat Transfer 29(2), 253–262 (2015)

    Article  Google Scholar 

  24. Sun, S.C., Qi, H., Yu, X.Y., Ren, Y.T., Ruan, L.M.: Inverse identification of temperature-dependent thermal properties using improved Krill Herd algorithm. Int. J. Thermophys. 39, 1–21 (2018)

    Article  Google Scholar 

  25. Kant, R., Joshi, S.N., Dixit, U.S.: An integrated FEM-ANN model for laser bending process with inverse estimation of absorptivity. Mech. Adv. Mater. Mod. Process. 1(1), 1–12 (2015)

    Article  Google Scholar 

  26. Kumar, V., Dixit, U.S., Zhang, J.: Determination of thermal conductivity, absorptivity and heat transfer coefficient during laser-based manufacturing. Measurement 131, 319–328 (2019)

    Article  Google Scholar 

  27. Kumar, V., Dixit, U.S., Zhang, J.: Determining thermal conductivity, specific heat capacity and absorptivity during laser based materials processing. Measurement 139, 213–225 (2019)

    Article  Google Scholar 

  28. Özisik, M.N.: Boundary value problems of heat conduction, Courier Corporation, New-York. 64–79 (2002)

  29. Mirkoohi, E., Ning, J., Bocchini, P., Fergani, O., Chiang, K.N., Liang, S.Y.: Thermal modeling of temperature distribution in metal additive manufacturing considering effects of build layers, latent heat, and temperature-sensitivity of material properties. J. Manuf. Mater. Process. 2(3), 63 (2018)

    Google Scholar 

  30. Valencia, J.J., Quested, P.N.: Thermophysical Properties; ASM Handbook, Volume 15, Casting. 468–481 (2008)

  31. Yadav, V., Singh, A.K., Dixit, U.S.: Inverse estimation of thermal parameters and friction coefficient during warm flat rolling process. Int. J. Mech. Sci. 96, 182–198 (2015)

    Article  Google Scholar 

  32. Zhu, Z., Wang, M., Zhang, H., Zhang, X., Yu, T., Wu, Z.: A finite element model to simulate defect formation during friction stir welding. Metals 7(7), 256 (2017)

    Article  Google Scholar 

  33. Nath, U., Yadav, V.: Analytical modelling of 3D temperature evolution of Al 6061-T6 irradiated by a moving laser heat source considering intensive convective boundary conditions. J. Mech. Sci. Technol. 36(12), 6247–6260 (2022)

Download references

Acknowledgements

The support provided by the IIT Ropar for the laser machine established through the DST India (Project No. DST/TDT/AMT/2017/026) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Utpal Nath: Investigation, Methodology, Formal analysis, Writing—original draft. Vinod Yadav: Supervision, Methodology, Writing—review & editing.

Corresponding author

Correspondence to V. Yadav.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Following expressions are used in solution:

$${X}_{m}\left({\beta }_{m},x\right)={\beta }_{m}\mathrm{cos}\left({\beta }_{m}x\right)+\left(\frac{h}{k}\right)\mathrm{sin}\left({\beta }_{m}x\right)$$
(A.1)
$${Y}_{n}\left({\gamma }_{n},y\right)={\gamma }_{n}\mathrm{cos}\left({\gamma }_{n}y\right)+\left(\frac{h}{k}\right)\mathrm{sin}\left({\gamma }_{n}y\right)$$
(A.2)
$${Z}_{p}\left({\eta }_{p},z\right)={\eta }_{p}\mathrm{cos}\left({\eta }_{p}z\right)+\left(\frac{h}{k}\right)\mathrm{sin}\left({\eta }_{p}z\right)$$
(A.3)
$$N_x\left(\beta_m\right)=\frac12\left\{\left(\beta_m^2+\left(\frac hk\right)^2\right)\left(L+\frac{\displaystyle\frac hk}{\left(\beta_m^2+\left(\frac hk\right)^2\right)}\right)+\frac hk\right\}$$
(A.4)
$$N_y\left(\gamma_n\right)=\frac12\left\{\left(\gamma_m^2+\left(\frac hk\right)^2\right)\left(W+\frac{\displaystyle\frac hk}{\left(\gamma_m^2+\left(\frac hk\right)^2\right)}\right)+\frac hk\right\}$$
(A.5)
$$N_z\left(\eta_p\right)=\frac12\left\{\left(\eta_m^2+\left(\frac hk\right)^2\right)\left(W+\frac{\displaystyle\frac hk}{\left(\eta_m^2+\left(\frac hk\right)^2\right)}\right)+\frac hk\right\}$$
(A.6)
$$\widehat{\overline{\widetilde{F}} }\left({\beta }_{m},{\gamma }_{n},{\eta }_{p}\right)={T}_{0}\left[\begin{array}{l}\left\{\frac{h}{k{\beta }_{m}}\left(1-\mathrm{cos}\left({\beta }_{m}L\right)\right)+\mathrm{sin}\left({\beta }_{m}L\right)\right\}\left\{\frac{h}{k{\gamma }_{n}}\left(1-\mathrm{cos}\left({\gamma }_{n}W\right)\right)+\mathrm{sin}\left({\gamma }_{n}W\right)\right\}\\ \times \left\{\frac{h}{k{\eta }_{p}}\left(1-\mathrm{cos}\left({\eta }_{p}H\right)\right)+\mathrm{sin}\left({\eta }_{p}H\right)\right\}\end{array}\right]$$
(A.7)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, U., Yadav, V. Inverse Model for Simultaneously Estimating Material Parameters and Absorption Coefficient in a Laser-Irradiated Sheet. Lasers Manuf. Mater. Process. 10, 606–625 (2023). https://doi.org/10.1007/s40516-023-00224-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-023-00224-7

Keywords

Navigation