Skip to main content

Advertisement

Log in

A Systematic Literature Review on Laser Welding of NiTi SMA

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

In this paper, a systematic literature review (SLR) approach has been implemented to show up the research progress on the joining of Nitinol (NiTi) Shape Memory Alloy (SMA) using laser. The properties of NiTi alloy, like the shape memory effect (SME), super-elasticity and biocompatibility, endure it as a desirable material in several high-performance applications. Owing to the extensive use of NiTi SMAs in medical devices, micro-electrical components, aerospace industries etc. joining of this alloy has been a subject of investigation and attracted the attention of the scientific community. Considering its unique characteristics, getting a proper joining of NiTi alloys with self as well as other materials is not only tough but also challenging. Therefore, literature on the advancements in the joining of NiTi alloys is reviewed systematically. Various challenges and ranges of the scope of research during similar and dissimilar joining are addressed and summarized. The weld joint characteristics such as the tensile strength, microhardness, corrosion resistance and microstructural properties are also outlined. Different optimization techniques implemented to obtain the optimum parameter setting during welding and/or machining of these distinctive materials are appraised. The research gaps referred to the domain are identified and deliberated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

Data Availability Statement

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. DeepanBharathiKannan, T., Sathiya, P., Ramesh, T.: Experimental investigation and characterization of laser welded NiTinol shape memory alloys. J. Manuf. Processes 25, 253–261 (2017). https://doi.org/10.1016/j.jmapro.2016.12.006

    Article  Google Scholar 

  2. Shayanfard, P., et al.: Stress raisers and fracture in shape memory alloys: review and ongoing challenges. Crit. Rev. Solid State Mater. Sci. 0(0), 1–59 (2021). https://doi.org/10.1080/10408436.2021.1896475

    Article  Google Scholar 

  3. Kramár, T., Tauer, J., Vondrous, P.: Welding of nitinol by selected technologies. Acta Polytech. 59, 42–50 (2019). https://doi.org/10.14311/AP.2019.59.0042

    Article  Google Scholar 

  4. Mehrpouya, M., Gisario, A., Lavvafi, H., Dehghanghadikolaei, A., Darafsheh, A.: Chapter 8 - Laser welding of nickel-titanium (NiTi) shape memory alloys. In: Paulo Davim, J., Gupta, K., Gupta, K., Paulo Davim, J. (eds.) Advanced Welding and Deforming, pp. 203–230. Elsevier (2021). https://doi.org/10.1016/B978-0-12-822049-8.00008-6

    Chapter  Google Scholar 

  5. Mehrpouya, M., Gisario, A., Barletta, M., Natali, S., Veniali, F.: Dissimilar laser welding of NiTi wires. Lasers Manuf. Mater. Process. 6(2), 99–112 (2019). https://doi.org/10.1007/s40516-019-00084-0

    Article  Google Scholar 

  6. Lee, J., Shin, Y.C.: Effects of composition and post heat treatment on shape memory characteristics and mechanical properties for laser direct deposited nitinol. Lasers Manuf. Mater. Process. 6(1), 41–58 (2019). https://doi.org/10.1007/s40516-019-0079-5

    Article  Google Scholar 

  7. Shamsolhodaei, A., Oliveira, J.P., Panton, B., Ballesteros, B., Schell, N., Zhou, Y.N.: Superelasticity preservation in dissimilar joint of NiTi shape memory alloy to biomedical PtIr. Materialia 16, 101090 (2021). https://doi.org/10.1016/j.mtla.2021.101090

    Article  Google Scholar 

  8. Mehrpouya, M., Shahedin, A.M., Daood Salman Dawood, S., Kamal Ariffin, A.: An investigation on the optimum machinability of NiTi based shape memory alloy. Mater. Manuf. Processes 32(13), 1497–1504 (2017). https://doi.org/10.1080/10426914.2017.1279290

    Article  Google Scholar 

  9. Shehab, A.A., et al.: Laser welding of titanium grade 2 and aluminium AA 3105-O using a New AlScZr filler metal. Lasers Manuf. Mater. Process. (2022). https://doi.org/10.1007/s40516-021-00159-x

    Article  Google Scholar 

  10. Mehrpouya, M., Gisario, A., Huang, H., Rahimzadeh, A., Elahinia, M.: Numerical study for prediction of optimum operational parameters in laser welding of NiTi alloy. Opt. Laser Technol. 118, 159–169 (2019). https://doi.org/10.1016/j.optlastec.2019.05.010

    Article  Google Scholar 

  11. Chan, C.-W., Man, H.C., Yue, T.: Parameter optimization for laser welding of NiTi wires by the Taguchi method. Lasers Eng. 30, 247–265 (2015)

    Google Scholar 

  12. Pattanayak, S., Panda, S.: Laser beam micro drilling – a review. Lasers Manuf. Mater. Process. 5(4), 366–394 (2018). https://doi.org/10.1007/s40516-018-0072-4

    Article  Google Scholar 

  13. Thorpe, R., Holt, R.: The SAGE dictionary of qualitative management research. SAGE (2007)

    Google Scholar 

  14. Mengist, W., Soromessa, T., Legese, G.: Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX 7, 100777 (2020). https://doi.org/10.1016/j.mex.2019.100777

    Article  Google Scholar 

  15. Siksnelyte-Butkiene, I.: A systematic literature review of indices for energy poverty assessment: a household perspective. Sustainability 13(19), 19 (2021). https://doi.org/10.3390/su131910900

    Article  Google Scholar 

  16. Wang, Y. et al.: Numerical simulation of ultrasonic spot welding of superelastic NiTi alloys: temperature distribution and deformation behavior. J. Manuf. Sci. Eng. 144(8) (2022). https://doi.org/10.1115/1.4053523

  17. Yao, R., Dong, P., Liaw, P.K., Zhou, J., Wang, W.: Microstructure and shape memory effect of laser welded Nitinol wires. Mater. Lett. 238, 1–5 (2019). https://doi.org/10.1016/j.matlet.2018.11.141

    Article  Google Scholar 

  18. Dong, P., Li, H., Wang, W., Zhou, J.: Microstructural characterization of laser micro-welded Nitinol wires. Mater. Charact. 135 (2017). https://doi.org/10.1016/j.matchar.2017.11.022

  19. Ikai, A., Kimura, K., Tobushi, H.: TIG welding and shape memory effect of TiNi shape memory alloy. J. Intell. Mater. Syst. Struct. 7(6), 646–655 (1996). https://doi.org/10.1177/1045389X9600700604

    Article  Google Scholar 

  20. Oliveira, J.P., Barbosa, D., BrazFernandes, F., Miranda, R.M.: Tungsten inert gas (TIG) welding of Ni-rich NiTi plates: Functional behavior. Smart Mater. Struct. 25, 03LT01 (2016). https://doi.org/10.1088/0964-1726/25/3/03LT01

    Article  Google Scholar 

  21. Quazi, M.M., et al.: A comprehensive assessment of laser welding of biomedical devices and implant materials: recent research, development and applications. Crit. Rev. Solid State Mater. Sci. 46(2), 109–151 (2021). https://doi.org/10.1080/10408436.2019.1708701

    Article  Google Scholar 

  22. Oliveira, J.P., Miranda, R.M., BrazFernandes, F.M.: Welding and joining of NiTi shape memory alloys: a review. Progress Mater. Sci. 88, 412–466 (2017). https://doi.org/10.1016/j.pmatsci.2017.04.008

    Article  Google Scholar 

  23. Mirshekari, G.R., Saatchi, A., Kermanpur, A., Sadrnezhaad, S.K.: Laser welding of NiTi shape memory alloy: Comparison of the similar and dissimilar joints to AISI 304 stainless steel. Opt. Laser Technol. 54, 151–158 (2013). https://doi.org/10.1016/j.optlastec.2013.05.014

    Article  Google Scholar 

  24. Tam, B., Khan, M.I., Zhou, Y.: Mechanical and Functional Properties of Laser-Welded Ti-55.8 Wt Pct Ni Nitinol Wires. Metall. Mater. Trans. A 42(8), 2166–2175 (2011). https://doi.org/10.1007/s11661-011-0639-6

    Article  Google Scholar 

  25. Naffakh-Moosavy, H., Rasouli, A.: Similar Joining of NiTi Shape Memory Alloy using Nd:YAG Pulsed Laser Welding. J Welding Sci. Technol. Iran 7(2), 89–101 (2022)

    Google Scholar 

  26. Gugel, H., Schuermann, A., Theisen, W.: Laser welding of NiTi wires. Mater. Sci. Eng., A 481–482, 668–671 (2008). https://doi.org/10.1016/j.msea.2006.11.179

    Article  Google Scholar 

  27. Datta, S., Raza, M.S., Saha, P., Pratihar, D.K.: Effects of process parameters on the quality aspects of weld-bead in laser welding of NiTinol sheets. Mater. Manuf. Processes 34(6), 648–659 (2019). https://doi.org/10.1080/10426914.2019.1566608

    Article  Google Scholar 

  28. Dong, P., et al.: Microstructure and corrosion resistance of laser-welded crossed nitinol wires. Materials (Basel) 11(5), E842 (2018). https://doi.org/10.3390/ma11050842

    Article  Google Scholar 

  29. Chan, C.W., Man, H.C.: Reduction of environmentally induced cracking of laser-welded shape memory NiTi wires via post-weld heat-treatment. Mater. Sci. Eng., A 588, 388–394 (2013). https://doi.org/10.1016/j.msea.2013.09.051

    Article  Google Scholar 

  30. Song, Y.G., Li, W.S., Li, L., Zheng, Y.F.: The influence of laser welding parameters on the microstructure and mechanical property of the as-jointed NiTi alloy wires. Mater. Lett. 62(15), 2325–2328 (2008). https://doi.org/10.1016/j.matlet.2007.11.082

    Article  Google Scholar 

  31. Chan, C.W., Man, H.C., Yue, T.M.: Effects of process parameters upon the shape memory and pseudo-elastic behaviors of laser-welded NiTi thin foil. Metall. Mater. Trans. A 42(8), 2264–2270 (2011). https://doi.org/10.1007/s11661-011-0623-1

    Article  Google Scholar 

  32. ShojaeiZoeram, A., Rahmani, A., Akbari Mousavi, S.A.A.: Microstructure and properties analysis of laser-welded Ni–Ti and 316l sheets using copper interlayer”. J. Manuf. Processes 26, 355–363 (2017). https://doi.org/10.1016/j.jmapro.2017.02.005

    Article  Google Scholar 

  33. Sun, Q., et al.: Study on weld formation and segregation mechanism for dissimilar pulse laser welding of NiTi and Cu wires. Opt. Laser Technol. 140, 107071 (2021). https://doi.org/10.1016/j.optlastec.2021.107071

    Article  Google Scholar 

  34. Shamsolhodaei, A., Sun, Q., Wang, X., Panton, B., Di, H., Zhou, Y.N.: Effect of Laser Positioning on the Microstructure and Properties of NiTi-Copper Dissimilar Laser Welds. J. Mater. Eng. Perform 29(2), 849–857 (2020). https://doi.org/10.1007/s11665-020-04637-9

    Article  Google Scholar 

  35. Xie, J., Chen, Y., Yin, L., Zhang, T., Wang, S., Wang, L.: Microstructure and mechanical properties of ultrasonic spot welding TiNi/Ti6Al4V dissimilar materials using pure Al coating. J. Manuf. Process 64, 473–480 (2021). https://doi.org/10.1016/j.jmapro.2021.02.009

    Article  Google Scholar 

  36. Deng, H., et al.: Microstructure and mechanical properties of dissimilar NiTi/Ti6Al4V joints via back-heating assisted friction stir welding. J. Manuf. Process. 64, 379–391 (2021). https://doi.org/10.1016/j.jmapro.2021.01.024

    Article  MathSciNet  Google Scholar 

  37. Rodrigues, L.F.A., Amorim, F.A., Grassi, E.N.D., dos Santos, P.L.L., de Araújo, C.J.: TIG spot welding applied to NiTi shape memory wires optimized by factorial design. Int. J. Adv. Manuf. Technol. 121(11), 7749–7762 (2022). https://doi.org/10.1007/s00170-022-09848-z

    Article  Google Scholar 

  38. Chen, Y., Sun, S., Zhang, T., Zhou, X., Li, S.: Effects of post-weld heat treatment on the microstructure and mechanical properties of laser-welded NiTi/304SS joint with Ni filler. Mater. Sci. Eng., A 771, 138545 (2020). https://doi.org/10.1016/j.msea.2019.138545

    Article  Google Scholar 

  39. Zeng, Z., Oliveira, J.P., Yang, M., Song, D., Peng, B.: Functional fatigue behavior of NiTi-Cu dissimilar laser welds. Mater. Des. 114, 282–287 (2017). https://doi.org/10.1016/j.matdes.2016.11.023

    Article  Google Scholar 

  40. Huang, G.Q., Yan, Y.F., Wu, J., Shen, Y.F., Gerlich, A.P.: Microstructure and mechanical properties of fine-grained aluminum matrix composite reinforced with nitinol shape memory alloy particulates produced by underwater friction stir processing. J. Alloy. Compd. 786, 257–271 (2019). https://doi.org/10.1016/j.jallcom.2019.01.364

    Article  Google Scholar 

  41. Costa, J.D., et al.: Obtaining and characterization of Ni-Ti/Ti-Mo joints welded by TIG process. Vacuum 133, 58–69 (2016). https://doi.org/10.1016/J.VACUUM.2016.08.016

    Article  Google Scholar 

  42. Fox, G., Hahnlen, R., Dapino, M.J.: Fusion welding of nickel–titanium and 304 stainless steel tubes: Part II: tungsten inert gas welding. J. Intell. Mater. Syst. Struct. 24(8), 962–972 (2013). https://doi.org/10.1177/1045389X12461076

    Article  Google Scholar 

  43. Fukumoto, S., Inoue, T., Mizuno, S., Okita, K., Tomita, T., Yamamoto, A.: Friction welding of TiNi alloy to stainless steel using Ni interlayer. Sci. Technol. Weld. Joining 15(2), 124–130 (2010). https://doi.org/10.1179/136217109X12577814486692

    Article  Google Scholar 

  44. Yuhua, C., Yuqing, M., Weiwei, L., Peng, H.: Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints. Opt. Laser Technol. 91, 197–202 (2017). https://doi.org/10.1016/j.optlastec.2016.12.028

    Article  Google Scholar 

  45. Cheng, Q., Guo, N., Zhang, D., Fu, Y., Zhang, S., He, J.: Study on interface and mechanical property of laser welding of NiTi shape memory alloy and 2A12 aluminum alloy joint with a TC4 wire. Smart Mater. Struct. 31(1), 015032 (2021). https://doi.org/10.1088/1361-665X/ac3d71

    Article  Google Scholar 

  46. Zhong, Y., Xie, J., Chen, Y., Yin, L., He, P., Lu, W.: Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer. Mater. Lett. 306, 130896 (2022). https://doi.org/10.1016/j.matlet.2021.130896

    Article  Google Scholar 

  47. Teshome, F.B., et al.: Microstructure, macrosegregation, and mechanical properties of NiTi to Ti6Al4V dissimilar laser welds using Co interlayer. J. Mater. Eng. Perform (2022). https://doi.org/10.1007/s11665-022-07064-0

    Article  Google Scholar 

  48. Li, H.M., Sun, D.Q., Cai, X.L., Dong, P., Wang, W.Q.: Laser welding of TiNi shape memory alloy and stainless steel using Ni interlayer. Mater. Des. 39, 285–293 (2012). https://doi.org/10.1016/j.matdes.2012.02.031

    Article  Google Scholar 

  49. Pouquet, J., Miranda, R.M., Quintino, L., Williams, S.: Dissimilar laser welding of NiTi to stainless steel. Int. J. Adv. Manuf. Technol. 61 (2011). https://doi.org/10.1007/s00170-011-3694-7

  50. Oliveira, J.P., et al.: Laser joining of NiTi to Ti6Al4V using a Niobium interlayer. Acta Mater. 105, 9–15 (2016). https://doi.org/10.1016/j.actamat.2015.12.021

    Article  Google Scholar 

  51. Wang, H., Xie, J., Chen, Y., Liu, W., Zhong, W.: Effect of CoCrFeNiMn high entropy alloy interlayer on microstructure and mechanical properties of laser-welded NiTi/304 SS joint. J. Market. Res. 18, 1028–1037 (2022). https://doi.org/10.1016/j.jmrt.2022.03.022

    Article  Google Scholar 

  52. Mehrpouya, M., Gisario, A., Broggiato, G.B., Puopolo, M., Vesco, S., Barletta, M.: Effect of welding parameters on functionality of dissimilar laser-welded NiTi superelastic (SE) to shape memory effect (SME) wires. Int. J. Adv. Manuf. Technol. 103(1), 1593–1601 (2019). https://doi.org/10.1007/s00170-019-03514-7

    Article  Google Scholar 

  53. Krishnakumari, A., Saravanan, M., Sarvesh, J.: Application of Nd: YAG laser in Nano WC surface alloying with low carbon austenitic steel in predicting the microstructure and hardness. Lasers Manuf. Mater. Process. 8(2), 201–215 (2021). https://doi.org/10.1007/s40516-021-00145-3

    Article  Google Scholar 

  54. Shamsolhodaei, A., Razmpoosh, M.H., Maletta, C., Magaro, P., Zhou, Y.N.: A comprehensive insight into the superelasticity measurement of laser welded NiTi shape memory alloys. Mater. Lett. 287, 129310 (2021). https://doi.org/10.1016/j.matlet.2021.129310

    Article  Google Scholar 

  55. Ge, F., et al.: Dissimilar laser welding of a NiTi shape memory alloy to Ti2AlNb. Metals 11(10), 10 (2021). https://doi.org/10.3390/met11101578

    Article  Google Scholar 

  56. Shamsolhodaei, A., Oliveira, J.P., Schell, N., Maawad, E., Panton, B., Zhou, Y.N.: Controlling intermetallic compounds formation during laser welding of NiTi to 316L stainless steel. Intermetallics 116, 106656 (2020). https://doi.org/10.1016/j.intermet.2019.106656

    Article  Google Scholar 

  57. Oliveira, J.P., et al.: Dissimilar laser welding of superelastic NiTi and CuAlMn shape memory alloys. Mater. Des. 128, 166–175 (2017). https://doi.org/10.1016/j.matdes.2017.05.011

    Article  Google Scholar 

  58. Mehrpouya, M., Gisario, A., Brotzu, A., Natali, S.: Laser welding of NiTi shape memory sheets using a diode laser. Opt. Laser Technol. 108, 142–149 (2018). https://doi.org/10.1016/j.optlastec.2018.06.038

    Article  Google Scholar 

  59. Mehrpouya, M., Gisario, A., Barletta, M., Broggiato, G.B.: Welding strength of dissimilar laser-welded NiTi and NiTiCu shape memory wires. Manuf. Lett. 22, 25–27 (2019). https://doi.org/10.1016/j.mfglet.2019.10.003

    Article  Google Scholar 

  60. Panton, B., Pequegnat, A., Zhou, Y.N.: Dissimilar laser joining of NiTi SMA and MP35N wires. Metall. Mater. Trans. A. 45(8), 3533–3544 (2014)

    Article  Google Scholar 

  61. Li, J., Panton, B., Mao, Y., Vivek, A., Daehn, G.: High-strength micro impact welding of NiTi wire to brass sheet. Weld World 66(9), 1799–1809 (2022). https://doi.org/10.1007/s40194-022-01336-y

    Article  Google Scholar 

  62. Asadi, S., Saeid, T., Valanezhad, A., Watanabe, I., Khalil-Allafi, J.: Effects of Ni powder addition on microstructure and mechanical properties of NiTi to AISI 304 stainless steel archwire dissimilar laser welds. J. Manuf. Process. 55, 13–21 (2020). https://doi.org/10.1016/j.jmapro.2020.03.041

    Article  Google Scholar 

  63. Michael, A., Pequegnat, A., Wang, J., Zhou, Y.N., Khan, M.I.: Corrosion performance of medical grade NiTi after laser processing. Surf. Coat. Technol. 324, 478–485 (2017). https://doi.org/10.1016/j.surfcoat.2017.05.092

    Article  Google Scholar 

  64. Chan, C.W., Man, H.C., Yue, T.M.: Effect of post-weld heat-treatment on the oxide film and corrosion behaviour of laser-welded shape memory NiTi wires. Corros. Sci. 56, 158–167 (2012). https://doi.org/10.1016/j.corsci.2011.11.020

    Article  Google Scholar 

  65. Mirshekari, G.R., Kermanpur, A., Saatchi, A., Sadrnezhaad, S.K., Soleymani, A.P.: Microstructure, cyclic deformation and corrosion behavior of laser welded NiTi shape memory wires. J. Mater. Eng. Perform 24(9), 3356–3364 (2015). https://doi.org/10.1007/s11665-015-1614-y

    Article  Google Scholar 

  66. Mandal, M., Patra, S., Chakraborty, R., Saha, P., Shome, M.: Microstructural evolution and nanoindentation study of magnetic pulse welded Nitinol and Aluminium sheets. Mater. Charact. 184, 111690 (2022). https://doi.org/10.1016/j.matchar.2021.111690

    Article  Google Scholar 

  67. Pequegnat, A., Michael, A., Wang, J., Lian, K., Zhou, Y., Khan, M.I.: Surface characterizations of laser modified biomedical grade NiTi shape memory alloys. Mater. Sci. Eng. C 50, 367–378 (2015). https://doi.org/10.1016/j.msec.2015.01.085

    Article  Google Scholar 

  68. Michael, A., Zhou, Y.N., Yavuz, M., Khan, M.I.: Deconvolution of overlapping peaks from differential scanning calorimetry analysis for multi-phase NiTi alloys. Thermochim. Acta 665, 53–59 (2018). https://doi.org/10.1016/j.tca.2018.05.014

    Article  Google Scholar 

  69. Mehrpouya, M., Gisario, A., Barletta, M., Veniali, F.: Investigation on the functionality of laser-welded NiTi to NiTiCu shape memory wires. J. Intell. Mater. Syst. Struct. 31(9), 1171–1175 (2020). https://doi.org/10.1177/1045389X20914401

    Article  Google Scholar 

  70. Gao, X.-L., Wang, X.-Q., Liu, J., Li, L.: A novel laser welding method for the reliable joining of NiTi/301SS. Mater. Lett. 268, 127573 (2020)

    Article  Google Scholar 

  71. Zhou, X., Chen, Y., Huang, Y., Mao, Y., Yu, Y.: Effects of niobium addition on the microstructure and mechanical properties of laser-welded joints of NiTiNb and Ti6Al4V alloys. J. Alloy. Compd. 735, 2616–2624 (2018). https://doi.org/10.1016/j.jallcom.2017.11.307

    Article  Google Scholar 

  72. Kannan, T.D.B., Ramesh, T., Sathiya, P.: Application of Artificial Neural Network Modelling for Optimization of Yb: YAG Laser Welding of Nitinol. Trans. Indian Inst. Met. 70(7), 1763–1771 (2017). https://doi.org/10.1007/s12666-016-0973-x

    Article  Google Scholar 

  73. Zhang, K., Liu, F., Tan, C., Zhou, Y.N., Peng, P.: Effect of heat input modes on microstructure, mechanical properties and porosity of laser welded NiTi-316L joints: A comparative study. Mater. Sci. Eng. A 848, 143426 (2022). https://doi.org/10.1016/j.msea.2022.143426

    Article  Google Scholar 

  74. Tam, B., Pequegnat, A., Khan, M.I., Zhou, Y.: Resistance microwelding of Ti-55.8 wt pct Ni nitinol wires and the effects of pseudoelasticity. Metall. Mater. Trans. A 43(8), 2969–2978 (2012). https://doi.org/10.1007/s11661-012-1115-7

    Article  Google Scholar 

  75. Zhang, K., Peng, P., Zhou, Y.N.: Laser welding-brazing of NiTi/304 stainless steel wires with beam defocus and large offset. Mater. Sci. Eng. A 835, 142660 (2022). https://doi.org/10.1016/j.msea.2022.142660

    Article  Google Scholar 

  76. Shamsolhodaei, A., Zhou, Y.N., Michael, A.: Enhancement of mechanical and functional properties of welded NiTi by controlling nickel vapourisation. Sci. Technol. Weld. Joining 24(8), 706–712 (2019). https://doi.org/10.1080/13621718.2019.1595926

    Article  Google Scholar 

  77. Tuissi, A., Besseghini, S., Ranucci, T., Squatrito, F., Pozzi, M.: Effect of Nd-YAG laser welding on the functional properties of the Ni–49.6at.%Ti. Mater. Sci. Eng. A 273–275, 813–817 (1999). https://doi.org/10.1016/S0921-5093(99)00422-0

    Article  Google Scholar 

  78. Gaikwad, V., Jatti, V.S.: Optimization of material removal rate during electrical discharge machining of cryo-treated NiTi alloys using Taguchi’s method. J. King Saud Univ. Eng. Sci. 30(3), 266–272 (2018). https://doi.org/10.1016/j.jksues.2016.04.003

    Article  Google Scholar 

  79. Mohammed, M.K., Al-Ahmari, A.: Laser-machining of microchannels in NiTi-based shape-memory alloys: experimental analysis and process optimization. Materials 13(13), 13 (2020). https://doi.org/10.3390/ma13132945

    Article  Google Scholar 

  80. Chaudhari, R., Vora, J.J., Prabu, S.S.M., Palani, I.A., Patel, V.K., Parikh, D.M.: Pareto optimization of WEDM process parameters for machining a NiTi shape memory alloy using a combined approach of RSM and heat transfer search algorithm. Adv. Manuf. 9(1), 64–80 (2021). https://doi.org/10.1007/s40436-019-00267-0

    Article  Google Scholar 

  81. Otibar, D., Rathmann, C., Lygin, K., Kreimeier, D., Szymansky, P.: Analyzing laser-welded NiTi-NiTi-joints for actuator applications using design of experiments. JMEA 5(2) (2015). https://doi.org/10.17265/2159-5275/2015.02.003

  82. Daneshmand, S., Kahrizi, E.F., LotfiNeyestanak, A.A., Monfared, V.: Optimization of electrical discharge machining parameters for Niti shape memory alloy by using the taguchi method. J. Mar. Sci. Technol. Taiwan 22(4), 506–512 (2014). https://doi.org/10.6119/JMST-013-0624-1

    Article  Google Scholar 

  83. Das, B., Parimanik, S.R., Mahapatra, T.R., Mishra, D.: Machinability assessment of NiTinol shape memory alloy in electrochemical machining. Int. J. Mach. Mach. Mater. 24(3–4), 280–313 (2022). https://doi.org/10.1504/IJMMM.2022.125200

    Article  Google Scholar 

  84. Sadeghi, A., Babakhani, A., Zebarjad, S.M., Mostajabodaveh, H.: Use of grey relational analysis for multi-objective optimisation of NiTiCu shape memory alloy produced by powder metallurgy process. J. Intell. Mater. Syst. Struct. 25(16), 2093–2101 (2014). https://doi.org/10.1177/1045389X13517312

    Article  Google Scholar 

  85. Parimanik, S.R., Mahapatra, T.R., Mishra, D., Rout, A.K.: Optimisation of performance characteristics in laser welding of Nitinol wires using Taguchi and grey relation analysis. Adv. Mater. Process. Technol. 0(0), 1–10 (2022). https://doi.org/10.1080/2374068X.2022.2088653

    Article  Google Scholar 

  86. Mishra, L., Mahapatra, T.R., Mishra, D., Pattanaik, S.K.: Machinability analysis and multiple performance optimization during laser micro-drilling of CNT reinforced polymer nanocomposite. Lasers Manuf. Mater. Process. 9(2), 151–172 (2022). https://doi.org/10.1007/s40516-022-00171-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trupti Ranjan Mahapatra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parimanik, S.R., Mahapatra, T.R. & Mishra, D. A Systematic Literature Review on Laser Welding of NiTi SMA. Lasers Manuf. Mater. Process. 10, 77–117 (2023). https://doi.org/10.1007/s40516-022-00200-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-022-00200-7

Keywords

Navigation