Skip to main content
Log in

Machinability Analysis and Multiple Performance Optimization During Laser Micro-drilling of CNT Reinforced Polymer Nanocomposite

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

The present research focuses on presaging the optimal parametric data set (material removal rate (MRR), taper, and heat-affected zone (HAZ)) for laser micro-drilling of a new class of polymer composite consisting of carbon nanotube (CNT) and epoxy. Experiments are conducted according to Taguchi’s methodology with cutting speed, lamp current, air pressure, and pulse width as controllable parameters and their significance is assessed through ANOVA. Second-order nonlinear regression models integrating relationship between control parameters and output responses are developed for optimizing the process parameters. Optimum process parameters are evaluated to minimize taper and HAZ and maximize the MRR. These nonlinear regression equations are further utilized in accelerated particle swarm optimization (APSO) algorithm for single as well as multiple performance optimization. A confirmation test is carried out with the optimal parameter settings obtained from Taguchi’s methodology and APSO and improvement in performance parameter is noticed in each case. It is also observed that the APSO metaheuristic algorithm performs efficiently for optimizing the responses relating to the laser micro-drilling process of nano-composites both in individual and multi-objective optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The authors declare that the data supporting the findings of this study are available within the article.

Abbreviations

CNT:

Carbon Nanotube

MRR:

Material Removal Rate (g/20s)

HAZ:

Heat Affected Zone (µm)

ANOVA:

Analysis of Variance

APSO:

Accelerated Particle Swarm Optimization

PMC:

Polymer Matrix Composite

LBM:

Laser Beam Machining

GRA:

Grey Relational Analysis

WPC:

Weighted Principal Component

VIKOR:

VIseKriterijumska Optimizacija I Kompromisno Resenje

dent :

Entrance hole diameter (mm)

dexit :

Exit hole diameter (mm)

(S/N) ratio:

signal-to-noise ratio

µm:

Micro meter

dB:

decibels

\(g^\ast\) :

Global best

\(x_i^\ast\) :

Local best

References

  1. Meijer, J.: Laser beam machining (LBM), state of the art and new opportunities. J. Mater. Process. Technol. 149, 2–17 (2004)

    Article  Google Scholar 

  2. Goswami, D., Chakraborty, S.: A study on the optimization performance of fireworks and cuckoo search algorithms in laser machining processes. J. Inst. Eng. Ineers Ser. C 96, 215–229 (2015)

    Article  Google Scholar 

  3. Chien, W.T., Hou, S.C.: Investigating the recast layer formed during the laser trepan drilling of Inconel 718 using the Taguchi method. Int. J. Adv. Manuf. Technol. 33, 308–316 (2007)

    Article  Google Scholar 

  4. Mishra, L.M., Mishra, D.: Evaluation and characterization of mechanical, electrical, and thermal properties of polymer nanocomposites reinforced with different allotropes of carbon. J. Harbin Inst. Technol. (New Ser.) (2021). https://doi.org/10.11916/j.issn.1005-9113.2020105

    Article  Google Scholar 

  5. Galińska, A.: Mechanical joining of fibre reinforced polymer composites to metals—a review. Part i: Bolted joining. Polym. (Basel) 12, 1–48 (2020)

    Google Scholar 

  6. Patel, P., Gohil, P., Rajpurohit, S.: Laser machining of polymer matrix composites: scope, limitation and application. Int. J. Eng. Trends Technol. 4, 2391–2399 (2013)

    Google Scholar 

  7. Panda, S., Mishra, D., Biswal, B.B.: Determination of optimum parameters with multi-performance characteristics in laser drilling-A grey relational analysis approach. Int. J. Adv. Manuf. Technol. 54, 957–967 (2011)

    Article  Google Scholar 

  8. Rajesh, P., Nagaraju, U., Gowd, G.H., Vardhan, T.V.: Experimental and parametric studies of Nd:YAG laser drilling on austenitic stainless steel. Int. J. Adv. Manuf. Technol. 93, 65–71 (2017)

    Article  Google Scholar 

  9. Pattanayak, S., Panda, S.: Laser beam micro drilling – a review. Lasers Manuf. Mater. Process. 5, 366–394 (2018)

    Article  Google Scholar 

  10. Kuar, A.S., Doloi, B., Bhattacharyya, B.: Modelling and analysis of pulsed Nd:YAG laser machining characteristics during micro-drilling of zirconia (ZrO2). Int. J. Mach. Tools Manuf. 46, 1301–1310 (2006)

    Article  Google Scholar 

  11. Gauri, S.K., Pal, S.: Comparison of performances of five prospective approaches for the multi-response optimization. Int. J. Adv. Manuf. Technol. 48, 1205–1220 (2010)

    Article  Google Scholar 

  12. Gautam, G.D., Mishra, D.R.: Parametric investigation in pulsed Nd:YAG laser cutting of Kevlar-basalt fiber composite. Lasers Manuf. Mater. Process. 7, 373–398 (2020)

    Article  Google Scholar 

  13. Biswas, R., Kuar, A.S., Biswas, S.K., Mitra, S.: Characterization of hole circularity in pulsed Nd:YAG laser micro-drilling of TiN-Al2O3 composites. Int. J. Adv. Manuf. Technol. 51, 983–994 (2010)

    Article  Google Scholar 

  14. Kuar, A.S., Biswas, P., Mitra, S., Biswas, R.: Experimental investigation of Nd: YAG laser micro-grooving operation of alumina workpiece using RSM. Int. J. Mater. Struct. Integr. 1, 355–370 (2008)

    Article  Google Scholar 

  15. Rao, R., Yadava, V.: Multi-objective optimization of Nd:YAG laser cutting of thin superalloy sheet using grey relational analysis with entropy measurement. Opt. Laser Technol. 41, 922–930 (2009)

    Article  Google Scholar 

  16. Sibalija, T.V., Petronic, S.Z., Majstorovic, V.D., Prokic-Cvetkovic, R., Milosavljevic, A.: Multi-response design of Nd:YAG laser drilling of Ni-based superalloy sheets using Taguchi’s quality loss function, multivariate statistical methods and artificial intelligence. Int. J. Adv. Manuf. Technol. 54, 537–552 (2011)

    Article  Google Scholar 

  17. Ciurana, J., Arias, G., Ozel, T.: Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel. Mater. Manuf. Process. 24, 358–368 (2009)

    Article  Google Scholar 

  18. Nagesh, S., Narasimha Murthy, H.N., Krishna, M., Basavaraj, H.: Parametric study of CO2 laser drilling of carbon nanopowder/vinylester/glass nanocomposites using design of experiments and grey relational analysis. Opt. Laser Technol. 48, 480–488 (2013)

    Article  Google Scholar 

  19. Nagesh, S., Narasimha Murthy, H.N., Pal, R., Supreeth Dev, S.D., Krishna, M.: Investigation of the effect of nanofillers on the quality of CO2 laser cutting of FRP nanocomposites. Int. J. Adv. Manuf. Technol. 90, 2047–2061 (2017)

    Article  Google Scholar 

  20. Muthukumar, V., Suresh Babu, A., Venkatasamy, R., Senthil Kumar, N.: An accelerated particle swarm optimization algorithm on parametric optimization of WEDM of die-steel. J. Inst. Eng. Ser. C 96, 49–56 (2015)

    Article  Google Scholar 

  21. Yan, Y., Ji, L., Bao, Y., Jiang, Y.: An experimental and numerical study on laser percussion drilling of thick-section alumina. J. Mater. Process. Technol. 212, 1257–1270 (2012)

    Article  Google Scholar 

  22. Mukherjee, R., Goswami, D., Chakraborty, S.: Parametric optimization of Nd: YAG laser beam machining process using artificial bee colony algorithm. J. Ind. Eng. (2013). https://doi.org/10.1155/2013/570250

    Article  Google Scholar 

  23. Chatterjee, S., Mahapatra, S.S., Bharadwaj, V., Choubey, A., Upadhyay, B.N., Bindra, K.S.: Quality evaluation of micro drilled hole using pulsed Nd:YAG laser: a case study on AISI 316. Lasers Manuf. Mater. Process. 5, 248–269 (2018)

    Article  Google Scholar 

  24. Suhaimi, S.N., Shamsuddin, S.M., Ahmad, W.A., Hasan, S., Venil, C.K.: Comparison of particle swarm optimization and response surface methodology in fermentation media optimization of flexirubin production. J. Teknol 81, 53–60 (2019)

    Google Scholar 

  25. Yang, W.H., Tarng, Y.S.: Design optimization of cutting parameters for turning operations based on the Taguchi method. 84, 122–129 (1998)

  26. Asghar, A., Raman, A.A.A., Daud, W.M.A.W.: A comparison of central composite design and Taguchi method for optimizing Fenton process. Sci. World J. (2014). https://doi.org/10.1155/2014/869120

    Article  Google Scholar 

  27. Kuar, A.S., Dhara, S.K., Mitra, S.: Multi-response optimisation of Nd:YAG laser micro-machining of die steel using response surface methodology. Int. J. Manuf. Technol. Manag 21, 17–29 (2010)

    Article  Google Scholar 

  28. Yang, X.S., Deb, S., Fong, S.: Accelerated particle swarm optimization and support vector machine for business optimization and applications. Commun. Comput. Inf. Sci. 136 CCIS, 53–66 (2011)

    Google Scholar 

  29. Ameur, T., Assas, M.: Modified PSO algorithm for multi-objective optimization of the cutting parameters. Prod. Eng. 6, 569–576 (2012)

    Article  Google Scholar 

Download references

Funding

The authors are thankful to the financial support provided by TEQIP III, VSSUT, Burla, Odisha for carrying out the research work (VSSUT/TEQIP/82/2020, dated 20/01/2020 and VSSUT/TEQIP/86/2020, dated 20/01/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trupti Ranjan Mahapatra.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, L., Mahapatra, T.R., Mishra, D. et al. Machinability Analysis and Multiple Performance Optimization During Laser Micro-drilling of CNT Reinforced Polymer Nanocomposite. Lasers Manuf. Mater. Process. 9, 151–172 (2022). https://doi.org/10.1007/s40516-022-00171-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-022-00171-9

Keywords

Navigation