Skip to main content
Log in

Physicochemical Properties of Nanofluids Produced from Oxidized Nanoparticles Synthesized in a Liquid by Pulsed Laser Ablation

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Since pulsed laser ablation in liquid is the most common, simple, and efficient technique to synthesize nanoparticles (NPs). In this work, pure aluminum (Al) and pure copper (Cu) targets are located inside a liquid ambient, next a Nd-YAG Laser of 1064 nm wavelength and 10 Hz pulse repetition is used at four different pulse energies of 30, 50, 70, and 90 mJ to produce Al-NPs and Cu-NPs. After that, a comparative/superlative study, and the physicochemical properties of the prepared nanofluids, (Al-NFs) and (Cu-NFs), have been carried out using transmission electron microscope, scanning electron microscopy with energy-dispersive X-ray spectroscopy, zeta-sizer, UV-Vis spectroscopy, density meter, and viscometer. The influence of laser energy on these properties have been investigated as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Shih, C.-Y., Shugaev, M.V., Wu, C., Zhigilei, L.V.: The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: insights from large-scale atomistic simulations. Phys. Chem. Chem. Phys. 22, 7077–7099 (2020). https://doi.org/10.1039/D0CP00608D

    Article  Google Scholar 

  2. Al-Kattan, A., Grojo, D., Drouet, C., Mouskeftaras, A., Delaporte, P., Casanova, A., Robin, J.D., Magdinier, F., Alloncle, P., Constantinescu, C., Motto-Ros, V., Hermann, J.: Short-Pulse Lasers: A Versatile Tool in Creating Novel Nano-/Micro-Structures and Compositional Analysis for Healthcare and Wellbeing Challenges. Nanomaterials. 11, 712 (2021). https://doi.org/10.3390/nano11030712

    Article  Google Scholar 

  3. Khashan, K.S., Badr, B.A., Sulaiman, G.M., Jabir, M.S., Hussain, S.A.: Antibacterial activity of Zinc Oxide nanostructured materials synthesis by laser ablation method. In: Journal of Physics: Conference Series. p. 12040. IOP Publishing Ltd (2021)

  4. Abed, M.A., Mutlak, F.A.H., Ahmed, A.F., Nayef, U.M., Abdulridha, S.K., Jabir, M.S.: Synthesis of Ag/Au (core/shell) nanoparticles by laser ablation in liquid and study of their toxicity on blood human components. In: Journal of Physics: Conference Series. p. 12013. IOP Publishing Ltd (2021)

  5. Shimohira, T., Katagiri, S., Ohsugi, Y., Hirota, T., Hatasa, M., Mizutani, K., Watanabe, K., Niimi, H., Iwata, T., Aoki, A.: Comprehensive and Sequential Gene Expression Analysis of Bone Healing Process Following Er:YAG Laser Ablation. Photobiomodulation Photomed. Laser Surg. 39, 100–112 (2021). https://doi.org/10.1089/photob.2020.4833

    Article  Google Scholar 

  6. DUDEJA, J.P.: Laser Technology for Analysis. Cleaning and Restoration of Ancient Painted Artworks. Lasers Eng. 48, 1–15 (2021)

    Google Scholar 

  7. Bäuerle, D.W.: Laser Processing and Chemistry. Springer, Berlin Heidelberg, New York (2000)

    Book  Google Scholar 

  8. Bäuerle, D.: Laser chemical processing: an overview to the 30th anniversary. Appl Phys A. 101, 447-459-447–459 (2010)

  9. Rafique, M., Rafique, M.S., Butt, S.H., Kalsoom, U., Afzal, A., Anjum, S., Usman, A.: Dependence of the structural optical and thermo-physical properties of gold nano-particles synthesized by laser ablation method on the nature of laser. Optik. 134, 140–148 (2017). https://doi.org/10.1016/j.ijleo.2017.01.015

    Article  Google Scholar 

  10. Rafique, M., Rafique, M.S., Butt, S.H., Afzal, A., Kalsoom, U.: Laser nature dependence on enhancement of optical and thermal properties of copper oxide nanofluids. Appl. Surf. Sci. 483, 187–193 (2019). https://doi.org/10.1016/j.apsusc.2019.03.306

    Article  Google Scholar 

  11. Rafique, M., Rafique, M.S., Kalsoom, U., Afzal, A., Butt, S.H., Usman, A.: Laser ablation synthesis of silver nanoparticles in water and dependence on laser nature. Opt. Quantum Electron. 51, 179 (2019). https://doi.org/10.1007/s11082-019-1902-0

    Article  Google Scholar 

  12. Gondal, M.A., Qahtan, T.F., Dastageer, M.A., Saleh, T.A., Maganda, Y.W., Anjum, D.H.: Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation. Appl. Surf. Sci. 286, 149–155 (2013). https://doi.org/10.1016/j.apsusc.2013.09.038

    Article  Google Scholar 

  13. Takada, N., Sasaki, T., Sasaki, K.: Synthesis of crystalline TiN and Si particles by laser ablation in liquid nitrogen. Appl. Phys. Mater. Sci. Process. 93, 833–836 (2008). https://doi.org/10.1007/s00339-008-4748-z

    Article  Google Scholar 

  14. Semaltianos, N.G., Logothetidis, S., Perrie, W., Romani, S., Potter, R.J., Sharp, M., French, P., Dearden, G., Watkins, K.G.: II-VI semiconductor nanoparticles synthesized by laser ablation. Appl. Phys. Mater. Sci. Process. 94, 641–647 (2009). https://doi.org/10.1007/s00339-008-4854-y

    Article  Google Scholar 

  15. Elaboudi, I., Lazare, S., Belin, C., Talaga, D., Labrugère, C.: From polymer films to organic nanoparticles suspensions by means of excimer laser ablation in water. Appl. Phys. Mater. Sci. Process. 93, 827–831 (2008). https://doi.org/10.1007/s00339-008-4746-1

    Article  Google Scholar 

  16. Liu, B., Hu, Z., Che, Y., Chen, Y., Pan, X.: Nanoparticle generation in ultrafast pulsed laser ablation of nickel. Appl. Phys. Lett. 90, 044103 (2007). https://doi.org/10.1063/1.2434168

    Article  Google Scholar 

  17. Eid, E.I., Al-Nagdy, A.A., Khalaf-Allah, R.A.: Nucleate pool boiling heat transfer above laser machining heating surfaces with different micro-cavity geometric shape for water-aluminum oxide nanofluid. Exp. Heat Transf. 1–20 (2021). doi: 10.1080/08916152.2021.1946207

  18. Riahi, A., Khamlich, S., Balghouthi, M., Khamliche, T., Doyle, T.B., Dimassi, W., Guizani, A., Maaza, M.: Study of thermal conductivity of synthesized Al2O3-water nanofluid by pulsed laser ablation in liquid. J. Mol. Liq. 304, 112694 (2020). https://doi.org/10.1016/j.molliq.2020.112694

    Article  Google Scholar 

  19. Khamliche, T., Khamlich, S., Moodley, M.K., Mothudi, B.M., Henini, M., Maaza, M.: Laser fabrication of Cu nanoparticles based nanofluid with enhanced thermal conductivity: Experimental and molecular dynamics studies. J. Mol. Liq. 323, 114975 (2021). https://doi.org/10.1016/j.molliq.2020.114975

    Article  Google Scholar 

  20. Elsayed, K.A., Imam, H., Ahmed, M.A., Ramadan, R.: Effect of focusing conditions and laser parameters on the fabrication of gold nanoparticles via laser ablation in liquid. Opt. Laser Technol. 45, 495–502 (2013). https://doi.org/10.1016/j.optlastec.2012.06.004

    Article  Google Scholar 

  21. Semaltianos, N.G.: Nanoparticles by laser ablation. Crit. Rev. Solid State Mater. Sci. 35, 105–124 (2010). https://doi.org/10.1080/10408431003788233

    Article  Google Scholar 

  22. Phuoc, T.X., Soong, Y., Chyu, M.K.: Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids. Opt. Lasers Eng. 45, 1099–1106 (2007). https://doi.org/10.1016/j.optlaseng.2007.06.005

    Article  Google Scholar 

  23. Zhou, W., Wang, Z.: Scanning microscopy for nanotechnology: techniques and applications. (2007)

  24. Goldstein, J., Newbury, D., Michael, J., Ritchie, N.: Scanning electron microscopy and X-ray microanalysis. (2017)

  25. Ghadimi, A., Saidur, R., Metselaar, H.S.C.: A review of nanofluid stability properties and characterization in stationary conditions. Int. J. Heat Mass Transf. 54, 4051–4068 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014

    Article  Google Scholar 

  26. Ruan, B., Jacobi, A.M.: Ultrasonication effects on thermal and rheological properties of carbon nanotube suspensions. Nanoscale Res. Lett. 7, 127 (2012). https://doi.org/10.1186/1556-276X-7-127

    Article  Google Scholar 

  27. Müller, R.H.: Zetapotential und Partikelladung in der Laborpraxis. Wissenschaftliche Verlagsgesellschaft, Stuttgart (1996)

    Google Scholar 

  28. Bera, B.: Nanoporous Silicon Prepared by Vapour Phase Strain Etch and Sacrificial Technique. Int. J. Comput. Appl. Micro, 42–45 (2015)

  29. Hyder, A.A.A.K.N. and S.: Ion-Solvent Interaction of Sodium Iodide and Lithium Nitrate in N,N-Dimethylformamide + Ethanol Mixtures at Various Temperatures. J. Indian Chem. Soc. 75, 501–505 (1998)

  30. Eyring H., J.M.S.: Significant Liquid Structure. John Wiley & Sons, Inc. New York, NY (1969)

  31. Jones, G., Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride. J. Am. Chem. Soc. 51, 2950–2964 (1929). https://doi.org/10.1021/ja01385a012

    Article  Google Scholar 

  32. Lorenz, W.: Theorie der Elektrolyte Von H. Falkenhagen unter Mitwirkung von W. Ebeling, mit einem Anhang (“Magnetische Kernresonanzuntersuchungen zur Struktur von Elektrolytlösungen”) von H. G. Hertz; S. Hirzel Verlag, Leipzig, 1971; 560 Seiten mit 142 Bildern und 90. Z. Für Chem. 12, 239–239 (2010). doi: 10.1002/zfch.19720120622

  33. Messaâdi, A., Ouerfelli, N., Das, D., Hamda, H., Hamzaoui, A.H.: Correspondence between Grunberg-Nissan, Arrhenius and Jouyban-Acree parameters for viscosity of isobutyric acid + water binary mixtures from 302.15 to 313.15 K. J. Solut. Chem. 41, 2186–2208 (2012). doi: 10.1007/s10953-012-9931-3

  34. Das, D., Ouerfelli, N.: The relative reduced redlich-kister and herráez equations for correlating excess properties of N,N-dimethylacetamide + formamide binary mixtures at temperatures from 298.15 K to 318.15 K. J. Solut. Chem. 41, 1334–1351 (2012). doi: 10.1007/s10953-012-9878-4

  35. Ouerfelli, N., Iulian, O., Besbes, R., Barhoumi, Z., Amdouni, N.: On the validity of the correlation - Belda equation for some physical and chemical properties in 1,4-dioxane + water mixtures. Phys. Chem. Liq. 50, 54–68 (2012). https://doi.org/10.1080/00319104.2010.494246

    Article  Google Scholar 

  36. Ouerfelli, N., Bouanz, M.: Excess molar volume and viscosity of isobutyric acid + water binary mixtures near and far away from the critical temperature. J. Solut. Chem. 35, 121–137 (2006). https://doi.org/10.1007/s10953-006-8944-1

    Article  Google Scholar 

  37. Viswanath, D.S., Natavajan, G.: Data book on the viscosity of liquids, (1989)

  38. Viswanath, D.S., Ghosh, T., Prasad, D.H.L., Dutt, N.V.K., Rani, K.Y.: Viscosity of Liquids: Theory. Estimation, Experiment, and Data. Springer (2007)

    MATH  Google Scholar 

  39. Messaâdi, A., Dhouibi, N., Hamda, H., Belgacem, F.B.M., Adbelkader, Y.H., Ouerfelli, N., Hamzaoui, A.H.: A New Equation Relating the Viscosity Arrhenius Temperature and the Activation Energy for Some Newtonian Classical Solvents. J. Chem. 2015, (2015). https://doi.org/10.1155/2015/163262

  40. Haj-Kacem, R.B., Ouerfelli, N., Herráez, J.V., Guettari, M., Hamda, H., Dallel, M.: Contribution to modeling the viscosity Arrhenius-type equation for some solvents by statistical correlations analysis. Fluid Phase Equilibria. 383, 11–20 (2014). https://doi.org/10.1016/j.fluid.2014.09.023

    Article  Google Scholar 

  41. Hamdi, R., Massoudi, I., Alotaibi, D.H., Ouerfelli, N.: Novel linear/nonlinear dependence between the Viscosity Arrhenius parameters correlation in Newtonian liquids. Chem. Phys. 542, 111076 (2021). https://doi.org/10.1016/j.chemphys.2020.111076

    Article  Google Scholar 

  42. Yu, W., Xie, H.: A review on nanofluids: Preparation, stability mechanisms, and applications, (2012)

  43. Yao, S., Teng, Z.: Effect of Nanofluids on Boiling Heat Transfer Performance. Appl. Sci. 9, 2818 (2019). https://doi.org/10.3390/app9142818

    Article  Google Scholar 

  44. Bhuiyan, M.H.U., Saidur, R., Amalina, M.A., Mostafizur, R.M., Islam, A.K.M.S.: Effect of nanoparticles concentration and their sizes on surface tension of nanofluids. In: Procedia Engineering. pp. 431–437. Elsevier Ltd (2015)

  45. Bejaoui, F., Salas, J.J., Nouairi, I., Smaoui, A., Abdelly, C., Martínez-Force, E., Youssef, N.: Ben: Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. J. Plant Physiol. 198, 32–38 (2016). https://doi.org/10.1016/j.jplph.2016.03.018

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Hamdi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flemban, T., Hamdi, R., Alkhabbaz, H. et al. Physicochemical Properties of Nanofluids Produced from Oxidized Nanoparticles Synthesized in a Liquid by Pulsed Laser Ablation. Lasers Manuf. Mater. Process. 9, 18–36 (2022). https://doi.org/10.1007/s40516-021-00160-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-021-00160-4

Keywords

Navigation