Skip to main content
Log in

Parametric Analysis and Optimization of Inclined Laser Percussion Drilling of Carbon Fiber Reinforced Plastic Using Solid-State Nd: YAG Laser

  • Published:
Lasers in Manufacturing and Materials Processing Aims and scope Submit manuscript

Abstract

Carbon fiber reinforced plastic (CFRP) is a next-generation material tailored for lightweight engineering applications. This study investigates the process of laser percussion inclined hole drilling (LPIHD) in CFRP, using an infrared laser of millisecond pulse duration. Parametric analysis to analyze the effect of input parameters like laser current (I), pulse width (Pw), gas pressure (Gp), workpiece thickness (Ti), and angle of incidence (θ) on geometrical hole characteristics, i.e., hole circularity at the top (HCT), hole circularity at the bottom (HCB) and hole taper (HT) has been carried out for LPIHD using Nd: YAG laser. A second-order regression model for each output response is develop using the Box-Behnken approach (BBD) of response surface methodology (RSM) and parametric analysis performed using RSM plots. Both the single objective optimization (SOO) and multiobjective optimization (MOO) of the LPIHD process were carried out using the desirability approach of RSM. The hole was analyzed using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX). It has been observed that LPIHD at high current (300 A) and high pulse width (6 ms) produce a hole with HCT (0.68), HCB(0.65), and HT (6.5°). CFRP of small thickness gives high HCT (0.8), HCB (0.8), and low HT (4°) at high current (300 A). The MOO using the desirability approach, produce a hole of HCT (0.9297), HCB (0.9138), and HT (0.1784). The SEM images reveal that hole produced at input parameters corresponding to MOO has better surface integrity than the hole corresponding to SOO of HCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of Data and Material (Data Transparency)

No

Code Availability (Software Application or Custom Code)

Not applicable.

References

  1. Raj, R.C.B., Ronald, B.A., Velayudham, A., Nayak, P.K.: Hole accuracy during deep hole drilling for hydraulic cylinder application. Adv. Mater. Res. 984–985, 67–72 (2014). https://doi.org/10.4028/www.scientific.net/AMR.984-985.67

    Article  Google Scholar 

  2. Hocheng, H., Tsao, C.C.: Effects of special drill bits on drilling induced delamination of composite materials. Int. J. Mach. Tools Manuf. 46, 1403–1416 (2006)

    Article  Google Scholar 

  3. Kim, D.W., Lee, Y.S., Park, M.S., Chu, C.N.: Tool life improvement by peck drilling and thrust force monitoring during deep-micro-hole drilling of steel. Int. J. Mach. Tools Manuf. 49, 246–255 (2009)

    Article  Google Scholar 

  4. Kumar, R., Kumar, A., Singh, I.: Electric discharge drilling of micro holes in CFRP laminates. J. Mater. Process. Technol. 259, 150–158 (2018)

    Article  Google Scholar 

  5. Pradere, C., Batsale, J.C., Goyhe’ne’che, J.M., Pailler, R., Dilhaire, S.: Thermal properties of carbon fibers at very high temperature. Carbon 47, 737–743 (2009)

    Article  Google Scholar 

  6. Liu, D., Tang, Y., Cong, W.L.: A review of mechanical drilling for composite laminates. Compos. Struct. 94, 1265–1279 (2012)

    Article  Google Scholar 

  7. Krishnaraj, V., Prabukarthi, A., Ramanathan, A., Elanghovan, N., Kumar, M.S., Zitoune, R., Davim, J.P.: Optimization of machining parameters at high-speed drilling of carbon fiber reinforced plastics (CFRP) laminates. Compos.: Part B 43, 1791–1799 (2012)

    Article  Google Scholar 

  8. Abel, A., Heilmann, M.: Deep hole drilling using tools with small diameters-process analysis and process design. CIRP Ann. Manuf. Technol. 61, 111–114 (2012)

    Article  Google Scholar 

  9. Rodden, W.S.O., Kudesia, S.S., Hand, D.P., Jones, J.D.C.: A comprehensive study of the long pulse Nd:YAG laser drilling of multi-layer carbon fibre composites. Opt. Commmun. 210, 319–328 (2002)

    Article  Google Scholar 

  10. Fenoughty, K.A., Jawaid, A., Pashby, I.R.: Machining of advanced engineering materials using traditional and laser techniques. J. Mater. Process. Technol. 42, 391–400 (1994)

    Article  Google Scholar 

  11. Li, L., Low, D.K.Y., Ghoreshi, M.: Hole taper characterisation and control in laser percussion drilling. CIRP Ann. Manuf. Technol. 51(1), 153–156 (2002)

    Article  Google Scholar 

  12. Takahashi, K., Tsukamoto, M., Masuno, S., Sato, Y.: Heat conduction analysis of laser CFRP processing with I.R. and U.V. laser light. Compos. Part A Appl. Sci. Manuf. 84, 114 (2016). https://doi.org/10.1016/j.compositesa.2015.12.00

    Article  Google Scholar 

  13. Jain, V.K.: Advanced Machining Processes, pp. 3–5. Allied Publishers Private Limited, New Delhi (2008)

    Google Scholar 

  14. Masmiati, N., Philip, P.K., Mater, J.: Investigations on laser percussion drilling of some thermoplastic polymers. J. Mater. Process. Technol.. 185, 198–203 (2007)

    Article  Google Scholar 

  15. Voisey, K.T., Fouquet, S., Roy, D., Clyne, T.W.: Fibre swelling during laser drilling of carbon fibre composites. Opt. Lasers Eng. 44, 1185–1197 (2006)

    Article  Google Scholar 

  16. French, P.W., Wolynski, A., Naeem, M., Sharp, M.C.: New laser machine tools for processing carbon fibre reinforced plastic (CFRP). Key Eng. Mater. 496, 30–35 (2011)

    Article  Google Scholar 

  17. Anarghya, M., Nitish, S.R., Yatheesha, R.B., Gurumurthy, B.M., Ranjith, B.S.: Investigation of CO2 laser drilled micro holes for heat affected zone and structural integrity in CFRP composites. Int. J. Mater. 3, 33–43 (2016)

    Google Scholar 

  18. Salama, A., Yan, Y., Li, L., Mativenga, P., Whitehead, D., Sabli, A.: Understanding the self-limiting effect in picosecond laser single and multiple parallel pass drilling/machining of CFRP composite and mild steel. Mater. & Des. 107, 461 (2016)

    Article  Google Scholar 

  19. S. Faas, C. Freitag, S. Boley, P. Berger, R. Weber, T. Graf (2017) Flow speed of the ablation vapours generated during laser drilling of CFRP with a continuous-wave laser beam, Appl. Phys. A Mater. Sci. Proces. 123,

  20. Herzog, D., Jaeschke, P., Meier, O., Haferkamp, H.: Investigations on the thermal effect caused by laser cutting with respect to static strength of CFRP. Int. J. Mach. Tools Manuf. 48, 1464 (2008)

    Article  Google Scholar 

  21. Leone, C., Genna, S., Tagliaferri, V.: Fibre laser cutting of CFRP thin sheets by multi-passes scan technique. Opt. Lasers Eng. 53, 43 (2014). https://doi.org/10.1016/j.optlaseng.2013.07.027

    Article  Google Scholar 

  22. Dell’Erba, M., Galantucci, L.M., Miglietta, S.: An experimental study on laser drilling and cutting of composite materials for the aerospace industry using excimer and CO2 sources. Compos. Manuf. (1992). https://doi.org/10.1016/0956-7143(92)90178-W3

    Article  Google Scholar 

  23. Wolynski, A., Herrmann, T., Mucha, P., Haloui, H., L’huillier, J.: Laser ablation of CFRP using picosecond laser pulses at different wavelengths from U.V. to I.R. Procedia Phys. (2011). https://doi.org/10.1016/j.phpro.2011.03.136

    Article  Google Scholar 

  24. Freitag, C., Onuseit, V., Weber, R., Graf, T.: High-speed observation of the heat flow in CFRP during laser processing. Procedia Phys. (2012). https://doi.org/10.1016/j.phpro.2012.10.027

    Article  Google Scholar 

  25. Li, Z.L., Zheng, H.Y., Lim, G.C., Chu, P.L., Li, L.: Study on U.V. laser machining quality of carbon fibre reinforced. Compos, Part A Appl. Sci. Manuf. 41, 1403 (2010). https://doi.org/10.1016/j.compositesa.2010.05.017

    Article  Google Scholar 

  26. Liu, Y.C., Wu, C.W., Huang, Y.H., Song, H.W., Huang, C.G.: Interlaminar damage of carbon fibre reinforced polymer composite laminate under continuous wave laser irradiation. Opt. Lasers Eng. 88, 91 (2017)

    Article  Google Scholar 

  27. Canel, T., Bağlan, I.: Tamer Sınmazçelik, Mathematical modeling of heat distribution on carbon fiber Poly(etherether-ketone) (PEEK) composite during laser ablation. Opt. Laser Technol. 127, 106190 (2020). https://doi.org/10.1016/j.optlastec.2020.106190

    Article  Google Scholar 

  28. Balasubramaniam, V., Rajkumar, D., Ranjithkumar, P., Narayanan, C.S.: Comparative study of mechanical technologies over laser technology for drilling carbon fiber reinforced polymer materials. Indian J. Eng. Mater. Sci. 27, 19–32 (2020)

    Google Scholar 

  29. Kumar, D., Singh, K.K.: Effect of nanofiller on fibre laser drilling quality of carbon fibre reinforced polymer composite laminates. Proc. IMechE Part E: J. Process. Mech. Eng. (2019). https://doi.org/10.1177/0954408918812253

    Article  Google Scholar 

  30. Sobri, S.A., Heinemann, R., Whitehead, D.: development of laser drilling strategy for thick carbon fibre reinforced polymer composites (CFRP). Polymer 12, 2674 (2020). https://doi.org/10.3390/polym12112674

    Article  Google Scholar 

  31. Tao, N., Chen, Genyu, Tianyu, Yu., Li, W., Fan, L.: Dual-beam laser drilling process for thick carbon fiber reinforced plastic composites plates. J. Mater. Process. Technol. (2020). https://doi.org/10.1016/j.jmatprotec.2020.116590

    Article  Google Scholar 

  32. Mathew, J., Goswami, G.L., Ramakrishnan, N., Naik, N.K.: Parametric studies on pulsed Nd:YAG laser cutting of carbon fibre reinforced plastic composites. J. Mater. Process. Technol. 89–90, 198–203 (1999)

    Article  Google Scholar 

  33. Negarestani, R., Li, L., Sezer, H.K., Whitehead, D., Methven, J.: Nano-second pulsed DPSS Nd:YAG laser cutting of CFRP composites with mixed reactive and inert gases. J. Adv. Manuf. Technol. Int. (2010). https://doi.org/10.1007/s00170-009-2431-y

    Article  Google Scholar 

  34. Negarestani, R., Li, L.: Laser machining of fibre-reinforced polymeric composite materials. Technol. Compos. Mater Mach. (2012). https://doi.org/10.1533/9780857095145.2.288

    Article  Google Scholar 

  35. Vijayan, D., Rajmohan, T.: Modelling and evolutionary computation on drilling of carbon fiber-reinforced polymer nanocomposite: an integrated approach using RSM based PSO. Soc. Mech. Sci. Eng. J. Braz. (2019). https://doi.org/10.1007/s40430-019-1892-7

    Article  Google Scholar 

  36. Biswas, R., Kuar, A.S., Mitra, S.: Multiobjective optimization of hole characteristics during pulsed Nd:YAG laser micro drilling of gamma-titanium aluminide alloy sheet. Lasers Eng. Opt. (2014). https://doi.org/10.1016/j.optlaseng.2014.03.014

    Article  Google Scholar 

  37. Ng, G.K.L., Li, L.: The effect of laser peak power and pulse width on the hole geometry repeatability in laser percussion drilling. Opt. Laser Technol. 33(6), 393–402 (2001)

    Article  Google Scholar 

  38. Ghoreishi, M., Low, D.K.Y., Li, L.: Comparative statistical analysis of hole taper and circularity in laser percussion drilling. Int. J. Mach. Tools Manuf. 42(9), 985–995 (2002)

    Article  Google Scholar 

  39. Shin, J., Mazumder, J.: Shallow angle drilling of inconel 718 using a helical laser drilling technique. J. Manuf. Sci. Eng. 139, 031004–031011 (2017)

    Article  Google Scholar 

  40. Sezer, H.K., Li, L., Schmidt, M., Pinkerton, A.J., Anderson, B., Williams, P.: Effect of beam angle on HAZ, recast and oxide layer characteristics in laser drilling of TBC nickel superalloys. Int. J. Mach. Tools Manuf. 46, 1972–1982 (2006)

    Article  Google Scholar 

  41. Mullick, S., Agrawal, A., Nath, A.: Effect of laser incidence angle on cut quality of 4 mm thick stainless-steel sheet using fiber laser. Opt. Laser Technol. 81, 168–179 (2016)

    Article  Google Scholar 

  42. Schneider, M., Berthe, L., Muller, M., Fabbro, R.: Influence of Incident angle on laser drilling. ICALEO 2007, 1205 (2007). https://doi.org/10.2351/1.5060999

    Article  Google Scholar 

  43. Okasha, M.M., Mativenga, P.T., Li, L., Sezer, H.K.: Laser drilling of nickel alloy: effect of process gases on drilling time and hole quality. ICALEO 2010, 127 (2010). https://doi.org/10.2351/1.5061972

    Article  Google Scholar 

  44. Kamalu, J., Byrdb, P., Pitman, A.: Variable angle laser drilling of thermal barrier coated nimonic. J. Mater. Process. Technol. 122, 355–362 (2002)

    Article  Google Scholar 

  45. Leigh, S., Sezer, K., Li, L., Reed, C.G., Cuttell, M.: Statistical analysis of recast formation in laser drilled acute blind holes in CMSX-4 nickel superalloy. Int. J. Adv. Manuf. Technol. 43, 1094–1105 (2009). https://doi.org/10.1007/s00170-008-1789-6

    Article  Google Scholar 

  46. Marimuthu, S., Antar, M., Dunleavey, J., Hayward, P.: Millisecond fibre laser trepanning drilling of angular holes. J. Adv. Manuf. Technol. Int. (2019). https://doi.org/10.1007/s00170-019-03389-8

    Article  Google Scholar 

  47. Yao, K.C., Lin, J.: The characterization of the hole-contour and plume ejection in the laser drilling with various inclination angles. Opt. Laser Technol. 48, 110–116 (2013). https://doi.org/10.1016/j.optlastec.2012.10.009

    Article  Google Scholar 

  48. Li, X., Hou, W., Han, B., Xu, L., Li, Z., Nan, P., Ni, X.: Investigation on the continuous wave mode and the ms pulse mode fiber laser drilling mechanisms of the carbon fiber reinforced composite. Polymers 12, 706 (2020). https://doi.org/10.3390/polym12030706

    Article  Google Scholar 

  49. Grund, D., Orlishausen, M., Taha, I.: Determination of fiber volume fraction of Carbon fiber-reinforced polymer using thermogravimetric methods. Polym. Test. (2019). https://doi.org/10.1016/j.polymertesting.2019.02.031

    Article  Google Scholar 

  50. Heinze, G., Dunkler, D.: Five myths about variable selection. Transpl. Int. 30, 6–10 (2017)

    Article  Google Scholar 

  51. Montgomery, D.C.: Design and Analysis of Experiments, 10th edn. Wiley, Hoboken (2019)

    Google Scholar 

  52. Steen, W.: Laser Material Processing. Springer, Berlin (2003)

    Book  Google Scholar 

  53. Hejjaji, A., Singh, D., Kubher, S., Kalyanasundaram, D., Gururaja, S.: Machining damage in FRPs: laser versus conventional drilling. Composites: Part A (2015). https://doi.org/10.1016/j.compositesa.2015.11.036

    Article  Google Scholar 

  54. Cheng, C.F., Tsui, Y.C., Clyne, T.W.: Application of a three-dimensional heat flow model to treat laser drilling of carbon fibre composites. Acta mater. 46, 4273–4285 (1998)

    Article  Google Scholar 

  55. Ki, H., Pravansu, S., Mohanty, S., Mazumder, J.: Multiple reflection and its influence on keyhole evolution. J. Laser Appl. 14, 1 (2002)

    Article  Google Scholar 

  56. Wu, C.W., Wu, X.Q., Huang, C.G.: Ablation behaviors of Carbon reinforced polymer composites by laser of different operation modes. Opt. Laser Technol. 73, 23–38 (2015)

    Article  Google Scholar 

  57. Pathak, S.V.: Enhanced heat transfer in composite materials. Ohio University (2013)

Download references

Acknowledgements

The authors would like to express their gratitude to Dr. B.N. Upadhyaya, Raja Ramanna Centre for Advanced Technology (RRCAT) Indore, India for providing the experimental facility for this research work. India, for providing the Nd: YAG laser machining system to conduct the experiments for this study.

Funding

No funding received from any source.

Author information

Authors and Affiliations

Authors

Contributions

No.

Corresponding author

Correspondence to Sanjay Mishra.

Ethics declarations

Conflict of intererst

No conflict of intererst.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, Y.K., Mishra, S. & Jayswal, S.C. Parametric Analysis and Optimization of Inclined Laser Percussion Drilling of Carbon Fiber Reinforced Plastic Using Solid-State Nd: YAG Laser. Lasers Manuf. Mater. Process. 8, 325–354 (2021). https://doi.org/10.1007/s40516-021-00151-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40516-021-00151-5

Keywords

Navigation