Skip to main content
Log in

“All-versus-nothing” proof of genuine tripartite steering and entanglement certification in the two-sided device-independent scenario

  • Regular Paper
  • Published:
Quantum Studies: Mathematics and Foundations Aims and scope Submit manuscript

Abstract

We consider the task of certification of genuine entanglement of tripartite states. For this purpose, we first present an “all-versus-nothing” proof of genuine tripartite Einstein–Podolsky–Rosen (EPR) steering by demonstrating the non-existence of a hybrid local hidden state (LHS) model in the tripartite network as a motivation to our main result. A full logical contradiction of the predictions of the hybrid LHS model with quantum mechanical outcome statistics for any three-qubit generalized Greenberger–Horne–Zeilinger (GGHZ) states and pure W-class states is shown. Using logical contradiction, we can distinguish between the GGHZ and W-class state in two-sided device-independent (2SDI) steering scenario. We next formulate a 2SDI steering inequality which is a generalisation of the fine-grained steering inequality (FGI) derived in [1] for the tripartite scenario. We show that the maximum quantum violation of this tripartite FGI can be used to certify genuine entanglement of three-qubit pure states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pramanik, T., Kaplan, M., Majumdar, A.S.: Fine-grained Einstein–Podolsky–Rosen-steering inequalities. Phys. Rev. A 90, 050305 (R) (2014)

    Google Scholar 

  2. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1–75 (2009)

    MathSciNet  Google Scholar 

  3. Sørensen, A.S., Mølmer, K.: Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431–4434 (2001)

    Google Scholar 

  4. Hyllus, P., Laskowski, W., Krischek, R., Schwemmer, C., Wieczorek, W., Weinfurter, H., Pezzé, L., Smerzi, A.: Fisher information and multiparticle entanglement. Phys. Rev. A 85, 022321 (2012)

    Google Scholar 

  5. Tóth, G.: Multipartite entanglement and high-precision metrology. Phys. Rev. A 85, 022322 (2012)

    Google Scholar 

  6. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Google Scholar 

  7. Briegel, W.D.R.R.M.V.N.H.J., Browne, D.E.: Measurement-based quantum computation. Nat. Phys. 5, 19 (2009)

    Google Scholar 

  8. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A 59, 156–161 (1999)

    Google Scholar 

  9. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Acín, A., Bruß, D., Lewenstein, M., Sanpera, A.: Classification of mixed three-qubit states. Phys. Rev. Lett. 87, 040401 (2001)

  11. Bourennane, M., Eibl, M., Kurtsiefer, C., Gaertner, S., Weinfurter, H., Gühne, O., Hyllus, P., Bruß, D., Lewenstein, M., Sanpera, A.: Experimental detection of multipartite entanglement using witness operators. Phys. Rev. Lett. 92, 087902 (2004)

    Google Scholar 

  12. Bruß, D.: Characterizing entanglement. J. Math. Phys. 43, 4237–4251 (2002)

    MathSciNet  MATH  Google Scholar 

  13. Huber, M., Sengupta, R.: Witnessing genuine multipartite entanglement with positive maps. Phys. Rev. Lett. 113, 100501 (2014)

  14. Clivaz, F., Huber, M., Lami, L., Murta, G.: Genuine-multipartite entanglement criteria based on positive maps. J. Math. Phys. 58, 082201 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Li, M., Wang, J., Shen, S., Chen, Z., Fei, S.-M.: Detection and measure of genuine tripartite entanglement with partial transposition and realignment of density matrices. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-17585-7

    Article  Google Scholar 

  16. Bowles, J., Šupić, I., Cavalcanti, D., Acín, A.: Device-independent entanglement certification of all entangled states. Phys. Rev. Lett. 121, 180503 (2018)

    Google Scholar 

  17. Seevinck, M., Uffink, J.: Sufficient conditions for three-particle entanglement and their tests in recent experiments. Phys. Rev. A 65, 012107 (2001)

    Google Scholar 

  18. Nagata, K., Koashi, M., Imoto, N.: Configuration of separability and tests for multipartite entanglement in bell-type experiments. Phys. Rev. Lett. 89, 260401 (2002)

    MathSciNet  MATH  Google Scholar 

  19. Bancal, J.-D., Gisin, N., Liang, Y.-C., Pironio, S.: Device-independent witnesses of genuine multipartite entanglement. Phys. Rev. Lett. 106, 250404 (2011)

    Google Scholar 

  20. Bhattacharya, S.S., Paul, B., Roy, A., Mukherjee, A., Jebaratnam, C., Banik, M.: Improvement in device-independent witnessing of genuine tripartite entanglement by local marginals. Phys. Rev. A 95, 042130 (2017)

    Google Scholar 

  21. Zwerger, M., Dür, W., Bancal, J.-D., Sekatski, P.: Device-independent detection of genuine multipartite entanglement for all pure states. Phys. Rev. Lett. 122, 060502 (2019)

    Google Scholar 

  22. Augusiak, R., Salavrakos, A., Tura, J., Acin, A.: Bell inequalities tailored to the greenberger-horne-zeilinger states of arbitrary local dimension. New J. Phys. 21, 113001 (2019)

    MathSciNet  Google Scholar 

  23. Maity, A.G., Das, D., Ghosal, A., Roy, A., Majumdar, A.S.: Detection of genuine tripartite entanglement by multiple sequential observers. Phys. Rev. A 101, 042340 (2020)

    Google Scholar 

  24. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Philos. Soc. 31, 555–563 (1935)

    MATH  Google Scholar 

  25. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Shrotriya, H., Bharti, K., Kwek, L.-C.: Robust semi-device-independent certification of all pure bipartite maximally entangled states via quantum steering. Phys. Rev. Res. 3, 033093 (2021)

    Google Scholar 

  27. Bavaresco, J., Araújo, M., Brukner, Č, Quintino, M.T.: Semi-device-independent certification of indefinite causal order. Quantum 3, 176 (2019)

    Google Scholar 

  28. Quintino, M.T., Vértesi, T., Brunner, N.: Joint measurability, Einstein–Podolsky–Rosen steering, and bell nonlocality. Phys. Rev. Lett. 113, 160402 (2014)

    Google Scholar 

  29. Uola, R., Moroder, T., Gühne, O.: Joint measurability of generalized measurements implies classicality. Phys. Rev. Lett. 113, 160403 (2014)

    Google Scholar 

  30. Sarkar, S., Saha, D., Augusiak, R.: Certification of incompatible measurements using quantum steering. arXiv:2107.02937 [quant-ph] (2021)

  31. Cavalcanti, D., Skrzypczyk, P., Aguilar, G., Nery, R., Ribeiro, P., Walborn, S.: Detection of entanglement in asymmetric quantum networks and multipartite quantum steering. Nat. Commun. 6, 7941 (2015)

    Google Scholar 

  32. Gupta, S., Maity, A.G., Das, D., Roy, A., Majumdar, A.S.: Genuine Einstein–Podolsky–Rosen steering of three-qubit states by multiple sequential observers. Phys. Rev. A 103, 022421 (2021)

    MathSciNet  Google Scholar 

  33. Gupta, S., Das, D., Majumdar, A.S.: Distillation of genuine tripartite Einstein–Podolsky–Rosen steering. Phys. Rev. A 104, 022409 (2021)

    MathSciNet  Google Scholar 

  34. Kafatos, M. (ed.): Bell’s Theorem. Quantum Theory and Conceptions of the Universe, Springer, Amsterdam (1989)

    Google Scholar 

  35. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    MathSciNet  MATH  Google Scholar 

  36. Deng, D.-L., Wu, C., Chen, J.-L., Oh, C.H.: Fault-tolerant greenberger-horne-zeilinger paradox based on non-abelian anyons. Phys. Rev. Lett. 105, 060402 (2010)

    Google Scholar 

  37. Reid, M.D., Drummond, P.D.: Quantum correlations of phase in nondegenerate parametric oscillation. Phys. Rev. Lett. 60, 2731–2733 (1988)

    Google Scholar 

  38. Hardy, L.: Quantum mechanics, local realistic theories, and lorentz-invariant realistic theories. Phys. Rev. Lett. 68, 2981–2984 (1992)

    MathSciNet  MATH  Google Scholar 

  39. Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)

    MathSciNet  MATH  Google Scholar 

  40. Berndl, K., Goldstein, S.: Comment on “quantum mechanics, local realistic theories, and lorentz-invariant realistic theories’’. Phys. Rev. Lett. 72, 780–780 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Chen, J.-L., Su, H.-Y., Xu, Z.-P., Pati, A.K.: Sharp contradiction for local-hidden-state model in quantum steering. Sci. Rep. 6, 32075 (2016)

    Google Scholar 

  42. Oppenheim, J., Wehner, S.: The uncertainty principle determines the nonlocality of quantum mechanics. Science 330, 1072 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Chowdhury, P., Pramanik, T., Majumdar, A.S., Agarwal, G.S.: Einstein–Podolsky–Rosen steering using quantum correlations in non-gaussian entangled states. Phys. Rev. A 89, 012104 (2014)

    Google Scholar 

  44. Chowdhury, P., Pramanik, T., Majumdar, A.S.: Stronger steerability criterion for more uncertain continuous-variable systems. Phys. Rev. A 92, 042317 (2015)

    Google Scholar 

  45. Reid, M.D.: Demonstration of the Einstein–Podolsky–Rosen paradox using nondegenerate parametric amplification. Phys. Rev. A 40, 913–923 (1989)

    Google Scholar 

  46. Saunders, D.J., Jones, S.J., Wiseman, H.M., Pryde, G.J.: Experimental EPR-steering using bell-local states. Nat. Phys. 6, 845–849 (2010)

    Google Scholar 

  47. Walborn, S.P., Salles, A., Gomes, R.M., Toscano, F., Souto Ribeiro, P.H.: Revealing hidden einstein-podolsky-rosen nonlocality. Phys. Rev. Lett. 106, 130402 (2011)

  48. Cavalcanti, E.G., He, Q.Y., Reid, M.D., Wiseman, H.M.: Unified criteria for multipartite quantum nonlocality. Phys. Rev. A 84, 032115 (2011)

    Google Scholar 

  49. Cavalcanti, D., Skrzypczyk, P.: Quantum steering: a review with focus on semidefinite programming. Rep. Progress Phys. 80, 024001 (2016)

    MathSciNet  Google Scholar 

  50. Jebaratnam, C., Das, D., Roy, A., Mukherjee, A., Bhattacharya, S.S., Bhattacharya, B., Riccardi, A., Sarkar, D.: Tripartite-entanglement detection through tripartite quantum steering in one-sided and two-sided device-independent scenarios. Phys. Rev. A 98, 022101 (2018)

    Google Scholar 

  51. Goswami, S., Bhattacharya, B., Das, D., Sasmal, S., Jebaratnam, C., Majumdar, A.S.: One-sided device-independent self-testing of any pure two-qubit entangled state. Phys. Rev. A 98, 022311 (2018)

    Google Scholar 

  52. Masanes, L.: Asymptotic violation of bell inequalities and distillability. Phys. Rev. Lett. 97, 050503 (2006)

    MathSciNet  Google Scholar 

  53. Rabelo, R., Zhi, L.Y., Scarani, V.: Device-independent bounds for hardy’s experiment. Phys. Rev. Lett. 109, 180401 (2012)

    Google Scholar 

  54. Orieux, A., Kaplan, M., Venuti, V., Pramanik, T., Zaquine, I., Diamanti, E.: Experimental detection of steerability in bell local states with two measurement settings. J. Opt. 20, 044006 (2018)

    Google Scholar 

  55. Bian, Z., Majumdar, A.S., Jebarathinam, C., Wang, K., Xiao, L., Zhan, X., Zhang, Y., Xue, P.: Experimental demonstration of one-sided device-independent self-testing of any pure two-qubit entangled state. Phys. Rev. A 101, 020301 (2020)

    Google Scholar 

Download references

Acknowledgements

C.J. acknowledges S. N. Bose Centre, Kolkata, for the postdoctoral fellowship and thanks J. Kaniewski for useful discussions. D.D. acknowledges the Science and Engineering Research Board (SERB), Government of India, for financial support through the National Post-Doctoral Fellowship (NPDF) (File No. PDF/2020/001358). S.D. acknowledge financial support from the INSPIRE program, Department of Science and Technology, Government of India (Grant No. C/5576/IFD/2015-16). S.G. acknowledges the S. N. Bose National Centre for Basic Sciences, Kolkata, for financial support. A.S.M. acknowledges Project No. DST/ICPS/QuEST/2018/98 from the Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashank Gupta.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: All-versus-nothing proof of genuine steering of GGHZ states in 1SDI scenario

Here, we demonstrate that the existence of hybrid LHS models leads to the contradiction “\(2=1\)” in the 1SDI scenario for any pure state that belongs the generalized GHZ (Greenberger–Horne–Zeilinger) class (7). Let us recapitulate the form of the assemblage as described by hybrid LHS models in the 1SDI scenario. In this case, Alice being the untrusted party performs the measurement and the tripartite state imposes the constraints on the observed assemblage at the Bob–Charlie end. If the shared state is of the form (5), the assemblage has the following form [31]:

$$\begin{aligned} \sigma _{a|X_x}^{BC} = \sum _\lambda p_\lambda ^{A':BC} p(a|X_x,\lambda )\rho _\lambda ^{BC} + \sum _\mu p_\mu ^{B:A'C} \rho _\mu ^B \otimes \sigma _{a|X_x,\mu }^C + \sum _\nu p_\nu ^{A'B:C} \sigma _{a|X_x,\nu }^B \otimes \rho _\nu ^C. \end{aligned}$$
(A1)

The assemblage (A1) contains three terms. The first term is an unsteerable assemblage from Alice to Bob–Charlie. Bob–Charlie’s assemblage is dependent on Alice’s input, and output through the common variable \(\lambda \). The second term is unsteerable from Alice to Bob but not necessarily from Alice to Charlie. In this case, Bob–Charlie’s assemblage is dependent on Alice’s input, output at Charlie’s end only, and the common hidden variable \(\mu \). The third term is unsteerable from Alice to Charlie but not necessarily from Alice to Bob. In this case, Bob–Charlie’s assemblage is dependent on Alice’s input, output at Bob’s end only, and the common hidden variable \(\nu \). When each element of Bob–Charlie’s assemblage can be written in the form (A1), then the assemblage does not demonstrate genuine EPR steering in 1SDI scenario but it may demonstrate steering. On the other hand, if the assemblage (1) can be written in the form (\(\sum _\lambda P(\lambda )P(a|X_x,\lambda )\rho _\lambda ^B \otimes \rho _\lambda ^C\)), then the assemblage is unsteerable and no signature of steering is present in the 1SDI scenario.

Now, Alice performs dichotomic projective measurements corresponding to the observables: \(X_0 = \sigma _x\) and \(X_1 = \sigma _y\) on her part of the shared GGHZ state (7). After Alice’s measurements, a total of four unnormalized conditional states \(\sigma _{a|X_x}^{BC^{\text {GGHZ}}}\) (with a, x \(\in \{0, 1\}\)) are prepared at Bob–Charlie’s end as mentioned below.

$$\begin{aligned} \sigma _{0|X_0}^{BC^{\text {GGHZ}}}= & {} \frac{1}{2} \Big | \theta _+^0 \Big \rangle \Big \langle \theta _+^0 \Big | = p(1) \rho _1^{BC},\quad \quad \sigma _{1|X_0}^{BC^{\text {GGHZ}}} = \frac{1}{2} \Big | \theta _-^0 \Big \rangle \Big \langle \theta _-^0 \Big | = p(2) \rho _2^{BC}, \nonumber \\ \sigma _{0|X_1}^{BC^{\text {GGHZ}}}= & {} \frac{1}{2} \Big | \theta _-^1 \Big \rangle \Big \langle \theta _-^1 \Big | = p(3) \rho _3^{BC},\quad \quad \sigma _{1|X_1}^{BC^{\text {GGHZ}}} = \frac{1}{2} \Big | \theta _+^1 \Big \rangle \Big \langle \theta _+^1 \Big | = p(4) \rho _4^{BC}, \end{aligned}$$
(A2)

where \(\Big | \theta _\pm ^0 \Big \rangle = \cos \theta \vert 00\rangle \pm \sin \theta \vert 11\rangle \) and \(\Big | \theta _\pm ^1 \Big \rangle = \cos \theta \vert 00\rangle \pm i \, \sin \theta \vert 11\rangle \). Hence, a total of four different conditional states are produced on Bob–Charlie’s end, each of which are pure states. Since the conditional states are pure, the assemblage is not the convex combination of the three terms of Eq. (A1) but any one of the terms of Eq. (A1). We find that the dependence of Bob and Charlie’s assemblage on Alice’s input and output may come from the common hidden variable and it is not the case that only Bob’s or Charlie’s state changes by the Alice’s input and output. This is the feature of the first term of Eq. (A1). Hence, if the conditional states have hybrid LHS description, then there exists an assemblage \(\{p(\lambda ) \rho _{\lambda }^{BC}\}\) such that

$$\begin{aligned} \sum _{\lambda } p(\lambda ) \rho _{\lambda }^{BC} = \rho _{\text {GGHZ}}^{BC} = \text {Tr}_{A} \Big [\big |\psi (\theta )_{\text {GGHZ}} \big \rangle \big \langle \psi (\theta )_{\text {GGHZ}} \big | \Big ]. \end{aligned}$$
(A3)

It is well known that a pure state cannot be expressed as a convex sum of other different states, i.e., a density matrix of pure state can only be expanded by itself. We can therefore, claim that the ensemble \(\{p(\lambda ) \rho _{\lambda }^{BC}\}\) consists of four hybrid LHS: \(\{p(1)\rho _1^{BC}, p(2)\rho _2^{BC}, p(3)\rho _3^{BC}, p(4)\rho _4^{BC}\}\) which reproduces the conditional states \(\{\sigma _{a|X_x}^{BC^{\text {GGHZ}}}\}_{a, X_x}\) at Bob–Charlie’s end. Now, using Eq. (A3), we can write,

$$\begin{aligned} \sum _{\lambda = 1}^{4} p(\lambda ) \rho _{\lambda }^{BC} = \rho _{\text {GGHZ}}^{BC}. \end{aligned}$$
(A4)

Next, summing Eq. (A2) and then taking trace, the left-hand sides give \(2 {\text {Tr}}[\rho ^{BC}_{\text {GGHZ}}] = 2\). Here we have used the fact: \(\sum _{a=0}^{1} \sigma ^{BC^{\text {GGHZ}}}_{a|X_x} = \rho ^{BC}_{\text {GGHZ}}\) \(\forall \) x. On the other hand, the right-hand sides give \( {\text {Tr}}[\rho ^{BC}_{\text {GGHZ}}] = 1\) following Eq. (A4). Hence, this leads to a full contradiction of “\(2=1\)”. Similarly in 2SDI scenario, the existence of hybrid LHS model leads to a contradiction of “\(2=1\)” when the shared state is a three-qubit GGHZ state (7) as shown in Sect. 3.

Appendix B: All-versus-nothing proof of genuine steering of W-class states in 1SDI scenario

Here, we demonstrate that the existence of hybrid LHS models leads to the contradiction “\(2=1\)” in the 1SDI scenario for any pure state that belongs the W-class (\(|\psi _w \rangle = c_0 \vert 001\rangle + c_1 \vert 010\rangle + \sqrt{1-c_0^2 - c_1^2}\vert 100\rangle \)). Alice performs dichotomic projective measurements corresponding to the observables: \(X_0 = \sigma _x\) and \(X_1 = \sigma _y\). After Alice’s measurements, a total of four unnormalized conditional states \(\sigma _{a|X_x}^{BC^{\text {W}}}\) (with a, x \(\in \{0, 1\}\)) are prepared at Bob–Charlie’s end as mentioned below.

$$\begin{aligned} \sigma _{0|X_0}^{BC^{\text {W}}}= & {} \frac{1}{2} \Big |w_+^0 \Big \rangle \Big \langle w_+^0 \Big | = p(1)\rho _{1}^{BC}, \quad \quad \sigma _{1|X_0}^{BC^{\text {W}}} = \frac{1}{2} \Big |w_-^0 \Big \rangle \Big \langle w_-^0 \Big | = p(2)\rho _{2}^{BC}, \nonumber \\ \sigma _{0|X_1}^{BC^{\text {W}}}= & {} \frac{1}{2} \Big |w_+^1 \Big \rangle \Big \langle w_+^1 \Big | = p(3)\rho _{3}^{BC}, \quad \quad \sigma _{1|X_1}^{BC^{\text {W}}} = \frac{1}{2} \Big |w_-^1 \Big \rangle \Big \langle w_-^1 \Big | = p(4)\rho _{4}^{BC}, \end{aligned}$$
(B1)

where \(\Big |w_{\pm }^0\Big \rangle := \sqrt{1-c_0^2-c_1^2} \vert 00\rangle \pm c_0 \vert 01\rangle \pm c_1 \vert 10\rangle \) and \(\Big |w_{\pm }^1\Big \rangle := \sqrt{1-c_0^2-c_1^2} \vert 00\rangle \pm i \, c_0 \vert 01\rangle \pm i \, c_1 \vert 10\rangle \). Hence, a total of four different conditional states are produced on Bob–Charlie’s end, each of which are pure states. Since the conditional states are pure, the assemblage is not the convex combination of the three terms of Eq. (A1) but any one of the terms of Eq. (A1). We find that the dependence of Bob and Charlie’s assemblage on Alice’s input and output may come from the common hidden variable and it is not the case that only Bob’s or Charlie’s state changes by the Alice’s input and output. This is the feature of the first term of Eq. (A1). Hence, if the conditional states have hybrid LHS description, then there exists an assemblage \(\{p(\lambda ) \rho _{\lambda }^{BC}\}\) such that

$$\begin{aligned} \sum _{\lambda } p(\lambda ) \rho _{\lambda }^{BC} = \rho _{w}^{BC} = \text {Tr}_{A} \Big [\big |\psi _w \big \rangle \big \langle \psi _w \big | \Big ]. \end{aligned}$$
(B2)

It is well known that a pure state cannot be expressed as a convex sum of other different states, i.e., a density matrix of pure state can only be expanded by itself. We can, therefore, claim that the ensemble \(\{p(\lambda ) \rho _{\lambda }^{BC}\}\) consists of four hybrid LHS: \(\{p(1)\rho _1^{BC}, p(2)\rho _2^{BC}, p(3)\rho _3^{BC}, p(4)\rho _4^{BC}\}\) which reproduces the conditional states \(\{\sigma _{a|X_x}^{BC^{\text {W}}}\}_{a, X_x}\) at Bob–Charlie’s end. Now, using Eq. (B2), we can write,

$$\begin{aligned} \sum _{\lambda = 1}^{4} p(\lambda ) \rho _{\lambda }^{BC} = \rho _{w}^{BC}. \end{aligned}$$
(B3)

Next, summing Eq. (B1) and then taking trace, the left-hand sides give \(2 {\text {Tr}}[\rho ^{BC}_{w}] = 2\). Here we have used the fact: \(\sum _{a=0}^{1} \sigma ^{BC^{w}}_{a|X_x} = \rho ^{BC}_{w}\) \(\forall \) x. On the other hand, the right-hand sides give \( {\text {Tr}}[\rho ^{BC}_{w}] = 1\) following Eq. (B3). Hence, this leads to a full contradiction of “\(2=1\)”.

Appendix C: All-versus-nothing proof of genuine steering of W-class states in 2SDI scenario

Here, we demonstrate that the existence of hybrid LHS models leads to the contradiction “\(4=1\)” in the 2SDI scenario for any pure state that belongs the W-class (\(|\psi _w \rangle = c_0 \vert 001\rangle + c_1 \vert 010\rangle + \sqrt{1-c_0^2 - c_1^2}\vert 100\rangle \)). Alice performs dichotomic projective measurements corresponding to the observables: \(X_0 = \sigma _x\) and \(X_1 = \sigma _y\). On the other hand, Bob performs dichotomic projective measurements corresponding to the observables: \(Y_0 = \frac{\sigma _x + \sigma _z}{\sqrt{2}}\) and \(Y_1 = \frac{\sigma _y + \sigma _z}{\sqrt{2}}\). After Alice’s and Bob’s measurements, a total of sixteen unnormalized conditional states \(\sigma _{a,b|X_x,Y_y}^{C^{\text {W}}}\) (with a, b, x, y \(\in \{0, 1\}\)) are prepared at Charlie’s end as mentioned below.

$$\begin{aligned} \sigma _{0, 0|X_0, Y_0}^{C^{\text {W}}}= & {} \frac{N_{w_1}^{00100}}{8} \Big | \psi _{w_1} \Big \rangle ^{00100} \Big \langle \psi _{w_1} \Big | = p(1) \rho _1^{C},\quad \quad \sigma _{0,1|X_0, Y_0}^{C^{\text {W}}} = \frac{N_{w_1}^{11001}}{8} \Big | \psi _{w_1} \Big \rangle ^{11001} \Big \langle \psi _{w_1} \Big | = p(2) \rho _2^{C}, \nonumber \\ \sigma _{1, 0|X_0, Y_0}^{C^{\text {W}}}= & {} \frac{N_{w_1}^{00110}}{8} \Big | \psi _{w_1} \Big \rangle ^{00110} \Big \langle \psi _{w_1} \Big | = p(3) \rho _3^{C},\quad \quad \sigma _{11|X_0,Y_0}^{C^{\text {W}}} = \frac{N_{w_1}^{11011}}{8} \Big | \psi _{w_1} \Big \rangle ^{11011} \Big \langle \psi _{w_1} \Big | = p(4) \rho _4^{C}, \nonumber \\ \sigma _{0, 0|X_0, Y_1}^{C^{\text {W}}}= & {} \frac{N_{w_2}^{01100}}{8} \Big | \psi _{w_2} \Big \rangle ^{01100} \Big \langle \psi _{w_2} \Big | = p(5) \rho _5^{C},\quad \quad \sigma _{0,1|X_0, Y_1}^{C^{\text {W}}} = \frac{N_{w_2}^{10001}}{8} \Big | \psi _{w_2} \Big \rangle ^{10001} \Big \langle \psi _{w_2} \Big | = p(6) \rho _6^{C}, \nonumber \\ \sigma _{1, 0|X_0, Y_1}^{C^{\text {W}}}= & {} \frac{N_{w_2}^{01110}}{8} \Big | \psi _{w_2} \Big \rangle ^{01110} \Big \langle \psi _{w_2} \Big | = p(7) \rho _7^{C},\quad \quad \sigma _{11|X_0,Y_1}^{C^{\text {W}}} = \frac{N_{w_2}^{10011}}{8} \Big | \psi _{w_2} \Big \rangle ^{10011} \Big \langle \psi _{w_2} \Big | = p(8) \rho _8^{C}, \nonumber \\ \sigma _{0, 0|X_1, Y_0}^{C^{\text {W}}}= & {} \frac{N_{w_3}^{00110}}{8} \Big | \psi _{w_3} \Big \rangle ^{00110} \Big \langle \psi _{w_3} \Big | = p(9) \rho _9^{C},\quad \quad \sigma _{0,1|X_1, Y_0}^{C^{\text {W}}} = \frac{N_{w_3}^{11011}}{8} \Big | \psi _{w_3} \Big \rangle ^{11011} \Big \langle \psi _{w_3} \Big | = p(10) \rho _{10}^{C}, \nonumber \\ \sigma _{1, 0|X_1, Y_0}^{C^{\text {W}}}= & {} \frac{N_{w_3}^{00100}}{8} \Big | \psi _{w_3} \Big \rangle ^{00100} \Big \langle \psi _{w_3} \Big | = p(11) \rho _{11}^{C},\quad \quad \sigma _{11|X_0,Y_0}^{C^{\text {W}}} = \frac{N_{w_3}^{11001}}{8} \Big | \psi _{w_3} \Big \rangle ^{11001} \Big \langle \psi _{w_3} \Big | = p(12) \rho _{12}^{C}, \nonumber \\ \sigma _{0, 0|X_1, Y_1}^{C^{\text {W}}}= & {} \frac{N_{w_4}^{01100}}{8} \Big | \psi _{w_4} \Big \rangle ^{01100} \Big \langle \psi _{w_4} \Big | = p(13) \rho _{13}^{C},\quad \quad \sigma _{0,1|X_1, Y_1}^{C^{\text {W}}} = \frac{N_{w_4}^{10011}}{8} \Big | \psi _{w_4} \Big \rangle ^{10011} \Big \langle \psi _{w_4} \Big | = p(14) \rho _{14}^{C}, \nonumber \\ \sigma _{1, 0|X_1, Y_1}^{C^{\text {W}}}= & {} \frac{N_{w_4}^{01110}}{8} \Big | \psi _{w_4} \Big \rangle ^{01110} \Big \langle \psi _{w_4} \Big | = p(15) \rho _{15}^{C},\quad \quad \sigma _{11|X_1,Y_1}^{C^{\text {W}}} = \frac{N_{w_4}^{10001}}{8} \Big | \psi _{w_4} \Big \rangle ^{10001} \Big \langle \psi _{w_4} \Big | = p(16) \rho _{16}^{C}, \end{aligned}$$
(C1)

where \(\Big | \psi _{w_1}^{abcde} \Big \rangle = \dfrac{\sqrt{2+(-1)^a\sqrt{2}}c_0\vert 1\rangle +(-1)^b\sqrt{2+(-1)^c\sqrt{2}}c_1\vert 0\rangle +(-1)^d\sqrt{2+(-1)^e\sqrt{2}}\sqrt{1-c_0^2-c_1^2}\vert 0\rangle }{\sqrt{N_{w_1}^{abcde}}}\),

\(\Big | \psi _{w_2}^{abcde} \Big \rangle = \dfrac{\sqrt{2+(-1)^a\sqrt{2}}c_0\vert 1\rangle +(-1)^b \iota \sqrt{2+(-1)^c\sqrt{2}}c_1\vert 0\rangle +(-1)^d\sqrt{2+(-1)^e\sqrt{2}}\sqrt{1-c_0^2-c_1^2}\vert 0\rangle }{\sqrt{N_{w_2}^{abcde}}}\),

\(\Big | \psi _{w_3}^{abcde} \Big \rangle = \dfrac{\sqrt{2+(-1)^a\sqrt{2}}c_0\vert 1\rangle +(-1)^b\sqrt{2+(-1)^c\sqrt{2}}c_1\vert 0\rangle +(-1)^d \iota \sqrt{2+(-1)^e\sqrt{2}}\sqrt{1-c_0^2-c_1^2}\vert 0\rangle }{\sqrt{N_{w_3}^{abcde}}}\),

\(\Big | \psi _{w_4}^{abcde} \Big \rangle = \dfrac{\sqrt{2+(-1)^a\sqrt{2}}c_0\vert 1\rangle +(-1)^b \iota (\sqrt{2+(-1)^c\sqrt{2}}c_1\vert 0\rangle +(-1)^d\sqrt{2+(-1)^e\sqrt{2}}\sqrt{1-c_0^2-c_1^2}\vert 0\rangle )}{\sqrt{N_{w_4}^{abcde}}}\).

Hence, a total of sixteen different conditional states are produced on Charlie’s end, each of which are pure states. Since the conditional states are pure, the assemblage is not the convex combination of the three terms of Eq. (6) but any one of the terms of Eq. (6). We find that the dependence of Charlie’s assemblage on Alice and Bob’s input and output may come from the common hidden variable and it is not the case that either Alice or Bob can change Charlie’s state through their input and output choices. This is the feature of the third term of the Eq. (6). Hence, if the conditional states have hybrid LHS description, then there exists an assemblage \(\{p(\nu ) \rho _{\nu }^{C}\}\) such that

$$\begin{aligned} \sum _{\nu } p(\nu ) \rho _{\nu }^{C} = \rho _{w}^{C} = \text {Tr}_{AB} \Big [\big |\psi _w \big \rangle \big \langle \psi _w \big | \Big ]. \end{aligned}$$
(C2)

It is well known that a pure state cannot be expressed as a convex sum of other different states, i.e., a density matrix of pure state can only be expanded by itself. We can therefore, claim that the ensemble \(\{p(\nu ) \rho _{\nu }^{C}\}\) consists of sixteen hybrid LHS: \(\{p(1)\rho _1^{C}, p(2)\rho _2^{C}, p(3)\rho _3^{C}, p(4)\rho _4^{C}, p(5)\rho _5^{C}\), \(p(6)\rho _6^{C}, p(7)\rho _7^{C}, p(8)\rho _8^{C}, p(9)\rho _9^{C}, p(10)\rho _{10}^{C}, p(11)\rho _{11}^{C}, p(12)\rho _{12}^{C}, p(13)\rho _{13}^{C}, p(14)\rho _{14}^{C},\) \( p(15)\rho _{15}^{C}, p(16)\rho _{16}^{C}\}\) which reproduces the conditional states \(\{\sigma _{a, b|X_x, Y_y}^{C}\}_{a, b, X_x, Y_y}\) at Charlie’s end. Now, using Eq. (C2) we can write,

$$\begin{aligned} \sum _{\nu = 1}^{16} p(\nu ) \rho _{\nu }^{C} = \rho _{w}^{C}. \end{aligned}$$
(C3)

Next, summing Eq. (C1) and then taking trace, the left-hand sides give \(4 {\text {Tr}}[\rho ^{C}_w] = 4\). Here we have used the fact: \(\sum _{a,b = 0}^{1} \sigma ^{C}_{a, b|X_x, Y_y} = \rho ^{C}_{w}\) \(\forall \) xy. On the other hand, the right-hand sides give \( {\text {Tr}}[\rho ^{C}_{w}] = 1\) following Eq. (C3). Hence, this leads to a full contradiction of “\(4=1\)”.

Appendix D: All-versus-nothing proof of steering of pure bi-separable states in 1SDI and 2SDI scenario

We first demonstrate that the existence of a hybrid LHS model leads to no contradiction in the 1SDI scenario for bi-separable state, but the existence of LHS models may lead to a contradiction. Consider a state \(\psi \) of the form (35). In particular, consider the following bi-separable state:

$$\begin{aligned} \psi _{bs} = (\cos \theta _1 \vert 00\rangle _{AB}+\sin \theta _1 \vert 11\rangle _{AB}) \otimes (\cos \theta _2 \vert 0\rangle _C+\sin \theta _2 \vert 1\rangle _C). \end{aligned}$$
(D1)

Alice performs dichotomic projective measurements corresponding to the observables: \(X_0 = \sigma _x\) and \(X_1 = \sigma _y\) on her part of the shared bi-separable state (D1). After Alice’s measurements, a total of four unnormalized conditional states \(\sigma _{a|X_x}^{BC^{\text {bs}}}\) (with a, x \(\in \{0, 1\}\)) are prepared at Bob–Charlie’s end as mentioned below.

$$\begin{aligned} \sigma _{0|X_0}^{BC^{\text {bs}}}= & {} \frac{1}{2} \Big | \theta _{++}^0 \Big \rangle \Big \langle \theta _{++}^0 \Big | = p(1) \sigma _{0|X_0,1}\otimes \rho _1^{C},\quad \quad \sigma _{1|X_0}^{BC^{\text {bs}}} = \frac{1}{2} \Big | \theta _{-+}^0 \Big \rangle \Big \langle \theta _{-+}^0 \Big | = p(1)\sigma _{1|X_0,1}\otimes \rho _1^{C}, \nonumber \\ \sigma _{0|X_1}^{BC^{\text {bs}}}= & {} \frac{1}{2} \Big | \theta _{-+}^1 \Big \rangle \Big \langle \theta _{-+}^1 \Big | = p(2) \sigma _{0|X_1,2}\otimes \rho _2^{C},\quad \quad \sigma _{1|X_1}^{BC^{\text {bs}}} = \frac{1}{2} \Big | \theta _{++}^1 \Big \rangle \Big \langle \theta _{++}^1 \Big | = p(2) \sigma _{1|X_1,2} \otimes \rho _2^{C}, \end{aligned}$$
(D2)

where \(\Big | \theta _{\pm ,\pm }^0 \Big \rangle = (\cos \theta _1 \vert 0\rangle \pm \sin \theta _1 \vert 1\rangle ) \otimes (\cos \theta _2 \vert 0\rangle \pm \sin \theta _2 \vert 1\rangle )\) and \(\Big | \theta _{\pm ,\pm }^1 \Big \rangle = (\cos \theta _1 \vert 0\rangle \pm \iota \sin \theta _1 \vert 1\rangle ) \otimes (\cos \theta _2 \vert 0\rangle \pm \sin \theta _2 \vert 1\rangle )\). Hence, a total of two distinguishable conditional states are produced at Bob–Charlie’s end, all of which are pure states. Since the conditional states are pure, the assemblage is not a convex combination of the three terms of Eq. (A1) but any one of the terms of Eq. (A1). We find that the dependence of Bob and Charlie’s assemblage on Alice’s input and output may come from the common hidden variable and it is the case that only Bob’s state changes by the Alice’s input and output. This is the feature of third term of Eq. (A1). The common variable for the conditional state \(\sigma _{1|X_0}^{BC^{bs}}\) is same as that of \(\sigma _{0|X_0}^{BC^{bs}}\). So, using a hybrid LHS model we cannot distinguish between them. Similarly, the states \(\sigma _{0|X_1}^{BC^{bs}}\) and \(\sigma _{1|X_1}^{BC^{bs}}\) are same according to the hybrid LHS model. Now, if the conditional states have hybrid LHS description, then there exists an assemblage \(\{p(\nu ) \rho _\nu ^B \otimes \rho _{\nu }^{C}\}\) such that

$$\begin{aligned} \sum _{\nu } p(\nu ) \rho _{\nu }^{B} \otimes \rho _{\nu }^{C} = \rho _{\text {bs}}^{BC} = \text {Tr}_{A} \Big [\big |\psi _{\text {bs}} \big \rangle \big \langle \psi _{\text {bs}} \big | \Big ]. \end{aligned}$$
(D3)

So, according to the hybrid LHS model, the ensemble \(\{p(\nu ) \rho _{\nu }^{B} \otimes \rho _{\nu }^{C}\}\) consists of four conditional states out of which two are distinguishable. These two reproduce the conditional states \(\{\sigma _{a|X_x}^{BC^{\text {bs}}}\}_{a, X_x}\) at Bob–Charlie’s end. Now, using Eq. (D3) we can write,

$$\begin{aligned} \sum _{\nu = 1}^{2} p(\nu ) \rho _{\nu }^{B} \otimes \rho _{\nu }^{C} = \rho _{\text {bs}}^{BC}. \end{aligned}$$
(D4)

Next, summing Eq. (D2) and then taking trace, both the left-hand and right-hand sides give \(2 {\text {Tr}}[\rho ^{BC}_{\text {GGHZ}}] = 2\). Here, we have used the fact: \(\sum _{a=0}^{1} \sigma ^{BC^{\text {bs}}}_{a|X_x} = \rho ^{BC}_{\text {bs}}\) \(\forall \) x and \({\text {Tr}}[\rho ^{BC}_{\text {bs}}] = 1\) following Eq. (D4). Hence, in this case there is no contradiction.

  1. 1.

    Remark-1 Note that in case of an LHS model, there will be four distinct conditional states and it leads to the contradiction \(``2 = 1''\) in the 1SDI scenario for the bi-separable states of the form (D1) when Alice performs dichotomic projective measurements corresponding to the observables: \(X_0 = \sigma _x\), \(X_1 = \sigma _y\). This demonstrates steering in such states.

  2. 2.

    Remark-2 The existence of LHS or hybrid LHS models lead to NO contradiction in the 1SDI scenario for bi-separable states of the form (31).

  3. 3.

    Remark-3 The characteristics of the pure bi-separable states in which Alice and Charlie are entangled are same as the state of the form (D1). This means no contradiction occurs for hybrid LHS models but the existence of LHS models lead to a contradiction.

  4. 4.

    Remark-4 Following similar reasoning and using a hybrid LHS model of the form (6), it can be shown that the existence of LHS models lead to no contradiction in the 2SDI scenario for bi-separable states, but the existence of LHS models may lead to a contradiction.

Appendix E

Proposition 1

For any two genuinely entangled three-qubit pure states (W-class pure states or GHZ-class pure states), FGI (26) does not give maximum quantum violation (\(= 4\)) for the same set of measurement settings by the two untrusted parties.

Proof

We use the following numerical strategy to show that no two pure genuinely entangled states can give rise to the maximum violation of FGI (26) for the same set of measurement settings by the untrusted parties:

Numerical strategy: The precision is set at the 6th decimal place for the numerical calculations. Following steps are evaluated for \(10^6\) randomly generated states: (i) State parameters are chosen randomly in the allowed range. There are three state parameters for the pure w-class state (E1) (taking normalization into account) and 5 state parameters for the pure GHZ-class (E2). (ii) We then numerically maximize the FGI (26) over the measurement parameters of the untrusted parties (Alice and Bob). Charlie’s measurements are as usual \(\sigma _x\) and \(\sigma _y\). FGI is maximally violated numerically if the violation is more than or equal to 3.99. Note that if we keep the same precision for maximum violation i.e. FGI is maximally violated if the violation is above 3.99999 then that are stricter conditions and are already a part of our observations with aforementioned relaxed conditions.

Examining equality of measurement parameters: All the states that maximally violates the FGI, their state parameters and the measurement parameters are printed out in distinct row in a file. Using sort filename | uniq -c command that outputs the measurement parameters (for one state, eight measurement parameters are in one line and task is to examine whether any two or more lines in the files are same) in ascending order along with their repeated values. If the row is not repeated, it outputs 1 otherwise the number of time it is repeated.

  • Pure W-class state: A general pure w-class state has the following form:

    $$\begin{aligned} \vert \psi _w\rangle = \sqrt{a}\vert 001\rangle + \sqrt{b}\vert 010\rangle + \sqrt{c}\vert 100\rangle +\sqrt{d}\vert 000\rangle \end{aligned}$$
    (E1)

    We observed that out of \(10^6\) randomly generated states, 44001 states maximally violates the FGI but no two states have the same set of measurement parameters for untrusted side.

  • Pure GHZ-class state: A general pure GHZ-class state has the following form:

    $$\begin{aligned} \vert \psi _{GHZ}^{C}\rangle : \cos \delta \vert 000\rangle + \sin \delta e^{\iota \phi } \vert \phi _A\phi _B\phi _C\rangle \end{aligned}$$
    (E2)

    where, \(\vert \phi _A\rangle = \cos \alpha \vert 0\rangle + \sin \alpha \vert 1\rangle \), \(\vert \phi _B\rangle = \cos \beta \vert 0\rangle + \sin \beta \vert 1\rangle \) and \(\vert \phi _C\rangle = \cos \gamma \vert 0\rangle + \sin \gamma \vert 1\rangle \). The above state is a GGHZ state (7) for \(\delta = \theta \), \(\phi = 0\), \(\alpha = \beta = \gamma = \frac{\pi }{2}\).

    We observed that only 6879 states out of \(10^6\) maximally violates the FGI but no two states have the same set of measurement parameters for the untrusted sides.

  • Both w-class and GHZ-class pure state: Even if we take both GHZ-class and w-class pure states together, we found no two states have the same set of measurement parameters for the untrusted sides. *The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Das, D., Jebarathinam, C. et al. “All-versus-nothing” proof of genuine tripartite steering and entanglement certification in the two-sided device-independent scenario. Quantum Stud.: Math. Found. 9, 175–198 (2022). https://doi.org/10.1007/s40509-021-00261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40509-021-00261-x

Keywords

Navigation