Skip to main content

Advertisement

Log in

In vitro culturing of Taxus baccata sub spp. wallichiana via fortified yew cuttings in tropical climate

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

Taxus baccata produces an anticancer drug. Taxol but its natural production is very poor which has resulted into excessive cutting and due to this the plant has entered the red data book as an endangered species. The demand for Taxol is high and in order to increase the production of Taxol, both conservation and alternative methods of production are required. Macro-propagation of the endangered Himalayan yew, through yew cuttings was tried in this study. The yew cuttings were dipped in Auxin solution (IAA, IBA, NAA in range of 250 mg/l, 500 mg/l, 1000 mg/l, 2000 mg/l and 5000 mg/l concentration) individually, then maintained in auxin fortified soil at 25 ± 1 °C and 65% humidity in 16/8 h day-night photoperiodic cycle. The effect on overall growth and morphology of the plant was studied in each auxin separately in the mentioned concentration. The initial results of four weeks suggested an increase in plant height where plant height in IBA increased by 86% followed by IAA that increased by 69% and increase in plant height in NAA was 56% respectively. The increase of plant height between 4 and 16 weeks depicted NAA (81%) at 500 mg/l concentration, IAA (117%) at 1000 mg/l and IBA (127%) were best for the sustainability of healthy plants. The results achieved over sixteen weeks indicated pronounced adventitious roots formation from yew cuttings with overall a difference up to 95% growth in plant height in addition to appearance of 50% more leaves when compared to control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aslam, M. (2016). Himalayan Yew, Taxus wallichiana: An exciting conifer with an uncertain future. New Delhi, India: Accepted by Science Reporter, CSIR-NISCAIR.

  • Aslam, M., Raina, P. A., Rafiq, R. U., Siddiqi, T. O., & Reshi, Z. A. (2017). Adventitious root formation in branch cuttings of Taxus wallichiana Zucc. (Himalayan yew): A clonal approach to conserve the scarce resource. Current Botany, 8, 127–135.

    Article  CAS  Google Scholar 

  • Auwal, A., Ibrahim, J. A., & Sinha, V. B. (2016). Response of wheat seeds grown under NaCl and ZnCl2 stress. Research Journal of Science and Technology, 8(2), 77–82.

    Article  Google Scholar 

  • Bhuju, S., & Gauchan, D. P. (2018). Taxus wallichiana (Zucc.), an endangered anti-cancerous plant: a review. International Journal of Research, 5(21), 10–21.

    Google Scholar 

  • Chauhan, R. S., Tiwari, D., Bisht, A. S., & Shukla, A. (2014). Ex situ conservation of medicinal and aromatic plants in Bharsar, Uttarakhand, India. Medicinal Plants-International Journal of Phytomedicines and Related Industries, 6(4), 282–292.

    Article  Google Scholar 

  • Cline, M. G. (1991). Apical dominance. The Botanical Review, 57(4), 318–358.

    Article  Google Scholar 

  • Dawa, S., Rather, Z. A., Stobgais, T., Angdus, T., Lakdan, S., & Tundup, P. (2018). Effect of growth regulators and growth media on the rhizogenesis of some genotypes of rose through stem cuttings. International Journal of Current Microbiology and Applied Sciences, 7(1), 1138–1147.

    Article  CAS  Google Scholar 

  • De Klerk, G. J., Ter Brugge, J., & Marinova, S. (1997). Effectiveness of indoleacetic acid, indolebutyric acid and naphthaleneacetic acid during adventitious root formation in vitro in Malus ‘Jork 9.’ Plant Cell, Tissue and Organ Culture, 49(1), 39–44.

    Article  Google Scholar 

  • Fatima, N., Kondratyuk, T. P., Park, E. J., Marler, L. E., Jadoon, M., Qazi, M. A., & Ahmed, S. (2016). Endophytic fungi associated with Taxus fuana (West Himalayan Yew) of Pakistan: Potential bio-resources for cancer chemo preventive agents. Pharmaceutical Biology, 54(11), 2547–2554.

    Article  CAS  PubMed  Google Scholar 

  • Geiss, G., Gutierrez, L., & Bellini, C. (2018). Adventitious root formation: new insights and perspectives. Annual Plant Reviews online (pp. 127–156). Wiley.

    Chapter  Google Scholar 

  • Goro, M. G., & Sinha, V. B. (2020). Seed germination responses for varying KNO3 and NaNO3 stress in Trifolium alexandrinum L cultivars. Biocatalysis and Agricultural Biotechnology, 25, 101618.

    Article  Google Scholar 

  • Hashemi, S. M., & Naghavi, M. R. (2016). Production and gene expression of morphinan alkaloids in hairy root culture of Papaver orientale L. using abiotic elicitors. Plant Cell, Tissue and Organ Culture PCTOC, 125(1), 31–41.

    Article  CAS  Google Scholar 

  • Hussain, A., Qarshi, I. A., Nazir, H., Ullah, I., Rashid, M., & Shinwari, Z. K. (2013). In vitro callogenesis and organogenesis in Taxus wallichiana ZUCC. The Himalayan Yew. Pakistan Journal of Botany, 45(5), 1755–1759.

    CAS  Google Scholar 

  • Karimian, R., Lahouti, M., & Davarpanah, S. J. (2015). Effects of different concentrations of 2,4-D and kinetin on callogenesis of Taxus brevifolia Nutt. Journal of Applied Biotechnology Reports, 1(4), 167–170.

    Google Scholar 

  • Kevers, C., Hausman, J. F., Faivre-Rampant, O., Evers, D., & Gaspar, T. (1997). Hormonal control of adventitious rooting: Progress and questions. Journal of Applied Botany, 71(3–4), 71–79.

    CAS  Google Scholar 

  • Khuraijam, J. S., & Mazumdar, J. (2019). An updated checklist of Indian western Himalayan gymnosperms and lecto typification of three names. Journal of Threatened Taxa, 11(9), 14204–14211.

    Article  Google Scholar 

  • Kollmeier, M., Felle, H. H., & Horst, W. J. (2000). Is basipetal auxin flow involved in inhibition of root elongation. Plant Physiology, 122, 945–956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kundu, S., Jha, S., & Ghosh, B. (2017). Metabolic engineering for improving production of taxol. Transgenesis and Secondary Metabolism (pp. 463–484). Springer.

    Chapter  Google Scholar 

  • Lanker, U., Malik, A. R., Gupta, N. K., & Butola, J. S. (2010). Natural regeneration status of the endangered medicinal plant, Taxus baccata Hook. F. syn. T. wallichiana, in northwest Himalaya. International Journal of Biodiversity Science, Ecosystem Services & Management, 6(1–2), 20–27.

    Article  Google Scholar 

  • Larsen, H. O., & Olsen, C. S. (2007). Unsustainable collection and unfair trade? Uncovering and assessing assumptions regarding Central Himalayan medicinal plant conservation. Biodiversity and Conservation, 16(6), 1679–1697.

    Article  Google Scholar 

  • Milutinović, M. G., Stanković, M. S., Cvetković, D. M., Topuzović, M. D., Mihailović, V. B., & Marković, S. D. (2015). Antioxidant and anticancer properties of leaves and seed cones from European yew (Taxus baccata L.). Archives of Biological Sciences, 67, 525–534.

    Article  Google Scholar 

  • Mohammed, G. H., & Vidaver, W. E. (1990). The influence of acclimatization treatment and plantlet morphology on early greenhouse-performance of tissue-cultured Douglas fir Pseudotsuga menziesii (Mirb) Franco]. Plant Cell, Tissue and Organ Culture, 21(2), 111–117.

    Article  Google Scholar 

  • Müller, D., & Leyser, O. (2011). Auxin, cytokinin and the control of shoot branching. Annals of Botany, 107(7), 1203–1212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandey, A., Nadeem, M., & Palni, L. M. S. (2002). Improvement in seed germination of Himalayan yew through simple soil treatments. Indian Journal of Forestry, 25(2), 109–113.

    Google Scholar 

  • Pant, S., & Samant, S. S. (2008). Population ecology of the endangered Himalayan Yew in Khokhan Wildlife Sanctuary of North Western Himalaya for conservation management. Journal of Mountain Science, 5(3), 257–264.

    Article  Google Scholar 

  • Pramanik, K., & Mohapatra, P. P. (2017). Role of auxin on growth, yield and quality of tomato—a review.". International Journal of Current Microbiology and Applied Sciences, 6(11), 1624–1636.

    Article  CAS  Google Scholar 

  • Puri, S. K., Habbu, P. V., Kulkarni, P. V., & Kulkarni, V. H. (2018). Nitrogen containing secondary metabolites from endophytes of medicinal plants and their biological/pharmacological activities—a review. Systematic Reviews in Pharmacy, 9(1), 22–30.

    Article  CAS  Google Scholar 

  • Rajewski, M., Lange, S., & Hattemer, H. H. (2000). Problems of reproduction in the genetic conservation of rare tree species: the example of common yew (Taxus baccata L). Forest Snow and Landscape Research, 75(1/2), 251–266.

    Google Scholar 

  • Rathore, P., Roy, A., & Karnatak, H. (2019). Modelling the vulnerability of Taxus wallichiana to climate change scenarios in South East Asia. Ecological Indicators, 102, 199–207.

    Article  Google Scholar 

  • Sahai, P., & Sinha, V. B. (2020a). Collection of Taxus from Tirthan valley, Himachal Pradesh, India for conservation in non natural environment. Plant Arch, 20(2), 2080–2083.

    Google Scholar 

  • Sahai, P., & Sinha, V. B. (2020b). Endangered Taxus baccata acclimatized in its non-native conditions pushing forward its ex situ conservation. Ann Agri Bio Res, 25(2), 194–197.

    Google Scholar 

  • Sahai, P., & Sinha, V. M. (2021). Auxin supplemented Hoagland′s medium exhibits potentials of conserving endangered Taxus baccata subsp wallichiana. Vegetos, 1–8.

  • Sahai, P., & Sinha, V. M. (2022). Development of hairy root culture in Taxus baccata sub sp wallichiana as an alternative for increased Taxol production. Materials Today: Proceedings 49, 3443–3448.

    CAS  Google Scholar 

  • Sangma, D. B., & Manohara, T. N. (2018). The role of Garo tribes of Meghalaya (India) in the conservation and management of medicinal plants diversity used in treating livestock diseases. Plant Science Today, 5(4), 155–162.

    Article  Google Scholar 

  • Sarmadi, M., Karimi, N., Palazón, J., Ghassempour, A., & Mirjalili, M. H. (2019). Improved effects of polyethylene glycol on the growth, antioxidative enzymes activity and taxanes production in a Taxus baccata L. callus culture. Plant Cell, Tissue and Organ Culture (PCTOC), 137(2), 319–328.

    Article  CAS  Google Scholar 

  • Sharma, H., & Garg, M. (2015). A review of traditional use, phytoconstituents and biological activities of Himalayan yew Taxus wallichiana. Journal of Integrative Medicine, 13(2), 80–90.

    Article  PubMed  Google Scholar 

  • Singh, M., Lankar, U., & Zaffar, S. N. (2018). Endangered medicinal plant Taxus baccata Hook. F. and natural regeneration status in Himachal Pradesh India. Indian Forester, 144(9), 812–816.

    Google Scholar 

  • Sinha, V. B., Grover, A., Yadav, P. V., & Pande, V. (2018). Salt and osmotic stress response of tobacco plants overexpressing Lepidium latifolium L. Ran GTPase gene. Indian Journal of Plant Physiology, 23(3), 494–498.

    Article  CAS  Google Scholar 

  • Sykłowska-Baranek, K., Rymaszewski, W., Gaweł, M., Rokicki, P., Pilarek, M., Grech-Baran, M., Hennig, J., & Pietrosiuk, A. (2019). Comparison of elicitor-based effects on metabolic responses of Taxus × media hairy roots in perfluorodecalin-supported two-phase culture system. Plant Cell Reports, 38(1), 85–99.

    Article  PubMed  CAS  Google Scholar 

  • Tapia, N., Zamilpa, A., Bonfill, M., Ventura, E., Cruz-Vega, D., Del Villar, A., Sosa-Cruz, F., & Osuna, L. (2013). Effect of the culture medium and biotic stimulation on taxane production in Taxus globosa Schltdl in vitro cultures. Acta Physiologiae Plantarum, 35(12), 3447–3455.

    Article  CAS  Google Scholar 

  • Vadivel, V., Anand, P., Manijkumar, S., Rajalakshmi, P., & Brindha, P. (2018). Chemical fingerprints of an India traditional herbal drug Talisapatra (Abies webbiana) and comparison with english yew (Taxus baccata). International Journal of Pharmacognosy and Phytochemical Research, 10(2), 84–91.

    Article  Google Scholar 

  • Williams, M., & Yanai, R. D. (1996). Multi-dimensional sensitivity analysis and ecological implications of a nutrient uptake model. Plant and Soil, 180(2), 311–324.

    Article  CAS  Google Scholar 

  • Zhang, D. Q., & Zhou, N. (2013). Genetic diversity and population structure of the endangered conifer Taxus wallichiana var. mairei (Taxaceae) revealed by Simple Sequence Repeat (SSR) markers. Biochemical Systematics and Ecology, 49, 107–114.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Department of Biotechnology, Sharda University for providing the space for research work.

Author information

Authors and Affiliations

Authors

Contributions

PS completed the bench work and initially drafted the manuscript. VBS planned, supervised and finalized the manuscript for publication.

Corresponding author

Correspondence to Vimlendu Bhushan Sinha.

Ethics declarations

Conflict of interest

Authors declare none.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahai, P., Sinha, V.B. In vitro culturing of Taxus baccata sub spp. wallichiana via fortified yew cuttings in tropical climate. Plant Physiol. Rep. 27, 419–427 (2022). https://doi.org/10.1007/s40502-022-00673-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-022-00673-w

Keywords

Navigation