Skip to main content
Log in

Effect of exogenous methyl jasmonate on in vitro propagation, metabolic profiling and proximadiol production from Cymbopogon schoenanthus subsp. proximus

  • Original Article
  • Published:
Plant Physiology Reports Aims and scope Submit manuscript

Abstract

In this study, the effect of methyl jasmonate (MeJA) incorporation on in vitro propagation, metabolic profiling, and production of the bioactive compound, proximadiol, in the medicinally important herb Cymbopogon schoenanthus subsp. proximus has been investigated. The propagation approaches involved both somatic embryogenesis and direct organogenesis. All studied concentrations (10–400 µM) have significantly improved somatic embryogenesis at different developmental stages, as indicated by higher numbers of somatic and mature embryos as well as the embryogenic shoots. In contrast, the studied concentrations have negatively affected organogenic shoot and root regeneration. Metabolic profiling of polar extracts from the direct regenerated shoots was analyzed based on NMR measurements. The results showed that 200 µM MeJA increased production of trigonelline by tenfold. However, the concentrations of several amino acids including alanine were decreased. Based on gas chromatography and mass spectrometry (GC/MS) data, proximadiol concentrations significantly decreased with 10 and 100 µM MeJA. Proximadiol production improved by using 200 µM MeJA, although the data were non-significant. Our findings suggested that, while the addition of MeJA to embryogenic calli improved somatic embryo induction, maturation, and germination, it suppressed organogenic shoot and root formation. MeJA at a particular concentration (200 µM) enhanced the accumulation of trigonelline and osmoprotectant amino acids, while their effect on proximadiol production was statistically non-significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author (AB) upon reasonable request.

References

  • Abd-El Mawla, M. A. A., & Osman, E. H. (2011). Elicitation of trigonelline and 4-hydroxyisoleucine with hypoglycemic activity in cell suspension cultures of Trigonella foenum graecum L. The Open Conference Proceedings Journal, 2(1), 80–87.

    Article  CAS  Google Scholar 

  • Abdelsalam, A., Chowdhury, K., & El-Bakry, A. (2017a). Micropropagation through in vitro tillering from seed cultures of the medicinal plant Cymbopogon schoenanthus subsp. proximus. Asian Journal of Applied Science, 5(1), 31–40.

    Google Scholar 

  • Abdelsalam, A., Mahran, E., Chowdhury, K., Boroujerdi, A., & El-Bakry, A. (2017b). NMR-based metabolomic analysis of wild, greenhouse, and in vitro regenerated shoots of Cymbopogon schoenanthus subsp. proximus with GC–MS assessment of proximadiol. Physiology and Molecular Biology of Plants, 23(2), 369–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhgari, A., Laakso, I., Maaheimo, H., Choi, Y. H., Seppänen-Laakso, T., Oksman-Caldentey, K. M., & Rischer, H. (2019). Methyl jasmonate elicitation increases terpenoid indole alkaloid accumulation in Rhazya stricta hairy root cultures. Plants, 8(12), 538–534.

    Article  CAS  Google Scholar 

  • Akhila, A. (2009). Essential oil-bearing grasses: The genus Cymbopogon. CRC Press.

    Book  Google Scholar 

  • Avoseh, O., Oyedeji, O., Rungqu, P., Nkeh-Chungag, B., & Oyedeji, A. (2015). Cymbopogon species; ethnopharmacology, phytochemistry and the pharmacological importance. Molecules, 20(5), 7438–7453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batanouny, K.H., Aboutabl, E., Shabana, M., & Soliman, F. (1999). Wild medicinal plants in Egypt. With contribution of: E. Aboutabl, M. Shabana, & F. Soliman). With support of the Swiss Development Co-operation (SDC). Academy of Scientific Research and Technology, Egypt. The World Conservation Union (IUCN), Switzerland. 60-4

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.

    Article  CAS  PubMed  Google Scholar 

  • Boulos, L. (1999). Flora of Egypt. Al Hadara publishing.

    Google Scholar 

  • Bunsupa, S., Yamazaki, M., & Saito, K. (2017). Lysine-derived alkaloids: Overview and update on biosynthesis and medicinal applications with emphasis on quinolizidine alkaloids. Mini Reviews in Medicinal Chemistry, 17(12), 1002–1012.

    Article  CAS  PubMed  Google Scholar 

  • Cappellari, L. D. R., Santoro, M. V., Schmidt, A., Gershenzon, J., & Banchio, E. (2020). Improving phenolic total content and monoterpene in Mentha x piperita by using salicylic acid or methyl jasmonate combined with Rhizobacteria inoculation. International Journal of Molecular Sciences, 21(1), 50.

    Article  CAS  Google Scholar 

  • Cui, Q., Lewis, I. A., Hegeman, A. D., Anderson, M. E., Li, J., Schulte, C. F., Westler, W. M., Eghbalnia, H. R., Sussman, M. R., & Markley, J. L. (2008). Metabolite identification via the madison metabolomics consortium database. Nature Biotechnology, 26(2), 162–164.

    Article  CAS  PubMed  Google Scholar 

  • Dar, M.I., Naikoo, M.I., Rehman, F., Naushin, F., & Khan, F.A. (2016). Proline accumulation in plants: roles in stress tolerance and plant development. In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies (pp. 155–166). Springer, New Delhi.

  • El-Askary, H. I., Meselhy, M. R., & Galal, A. M. (2003). Sesquiterpenes from Cymbopogon proximus. Molecules, 8(9), 670–677.

    Article  CAS  PubMed Central  Google Scholar 

  • El-Bakry, A. A., & Abdel-Salam, A. M. (2012). Regeneration from embryogenic callus and suspension cultures of the wild medicinal plant Cymbopogon schoenanthus. African Journal of Biotechnology, 11(43), 10098–10107.

    CAS  Google Scholar 

  • Engqvist, M. K., Schmitz, J., Gertzmann, A., Florian, A., Jaspert, N., Arif, M., Balazadeh, S., Mueller-Roeber, B., Fernie, A. R., & Maurino, V. G. (2015). GLYCOLATE OXIDASE3, a glycolate oxidase homolog of yeast L-lactate cytochrome c oxidoreductase, supports L-lactate oxidation in roots of Arabidopsis. Plant Physiology, 169(2), 1042–1061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forde, B. G., & Lea, P. J. (2007). Glutamate in plants: Metabolism, regulation, and signaling. Journal of Experimental Botany, 58(9), 2339–2358.

    Article  CAS  PubMed  Google Scholar 

  • Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient requirements of suspension culture of soybean root cells. Experimental Cell Research, 50(1), 151–158.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X. P., Wang, X. F., Lu, Y. F., Zhang, L. Y., Shen, Y. Y., Liang, Z., & Zhang, D. P. (2004). Jasmonic acid is involved in the water-stress-induced betaine accumulation in pear leaves. Plant Cell & Environment, 27(4), 497–507.

    Article  CAS  Google Scholar 

  • González-Moro, B., Lacuesta, M., Becerril, J. M., Gonzalez-Murua, C., & Muñoz-Rueda, A. (1997). Glycolate accumulation causes a decrease of photosynthesis by inhibiting RUBISCO activity in maize. Journal of Plant Physiology, 150(4), 388–394.

    Article  Google Scholar 

  • Hao, Y. J., Cui, X. H., Li, J. R., An, X. L., Sun, H. D., Piao, X. C., & Lian, M. L. (2020). Cell bioreactor culture of Orostachys cartilaginous A. Bor. and involvement of nitric oxide in methyl jasmonate-induced flavonoid synthesis. Acta Physiologiae Plantarum, 42(1), 1–10.

    Article  CAS  Google Scholar 

  • Henery, M. L., Wallis, I. R., Stone, C., & Foley, W. J. (2008). Methyl jasmonate does not induce changes in Eucalyptus grandis leaves that alter the effect of constitutive defenses on larvae of a specialist herbivore. Oecologia, 156(4), 847–859.

    Article  CAS  PubMed  Google Scholar 

  • Ji, J. J., Feng, Q., Sun, H. F., Zhang, X. J., Li, X. X., Li, J. K., & Gao, J. P. (2019). Response of bioactive metabolite and biosynthesis related genes to methyl jasmonate elicitation in Codonopsis pilosula. Molecules, 24(3), 533.

    Article  PubMed Central  CAS  Google Scholar 

  • Kim, H. K., Choi, Y. H., & Verpoorte, R. (2011). NMR-based plant metabolomics: Where do we stand, where do we go? Trends in Biotechnology, 29(6), 269–275.

    Article  CAS  Google Scholar 

  • Kim, Y. B., Kim, J. K., Uddin, M. R., Xu, H., Park, W. T., Tuan, P. A., Li, X., Chung, E., Lee, J. H., & Park, S. U. (2013). Metabolomics analysis and biosynthesis of rosmarinic acid in Agastache rugosa Kuntze treated with methyl jasmonate. PLoS ONE, 8, e64199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kováčik, J., Klejdus, B., Štork, F., Hedbavny, J., & Bačkor, M. (2011). Comparison of methyl jasmonate and cadmium effect on selected physiological parameters in scenedesmus quadricauda (chlorophyta, chlorophyceae) 1. Journal of Phycology, 47(5), 1044–1049.

    Article  PubMed  CAS  Google Scholar 

  • Li, C., Wang, P., Menzies, N. W., Lombi, E., & Kopittke, P. M. (2018). Effects of methyl jasmonate on plant growth and leaf properties. Journal of Plant Nutrition and Soil Science, 181(3), 409–418.

    Article  CAS  Google Scholar 

  • Lichman, B. R. (2021). The scaffold-forming steps of plant alkaloid biosynthesis. Natural Product Reports, 38(1), 103–129.

    Article  CAS  PubMed  Google Scholar 

  • Lischweski, S., Muchow, A., Guthorl, D., & Hause, B. (2015). Jasmonates act positively in adventitious root formation in petunia cuttings. BMC Plant Biology, 15(1), 229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Machado, R. A., Arce, C. C., Ferrieri, A. P., Baldwin, I. T., & Erb, M. (2015). Jasmonate-dependent depletion of soluble sugars compromises plant resistance to M anduca sexta. New Phytolgist, 207(1), 91–105.

    Article  CAS  Google Scholar 

  • Maciejewska, B., & Kopcewicz, J. (2002). Inhibitory effect of methyl jasmonate on flowering and elongation growth in Pharbitis nil. Plant Growth Regultion, 1(3), 216–223.

    Article  CAS  Google Scholar 

  • Maksymiec, W., & Krupa, Z. (2007). Effects of methyl jasmonate and excess copper on root and leaf growth. Biologia Plantarum, 51(2), 322–326.

    Article  CAS  Google Scholar 

  • Mangas, S., Bonfill, M., Osuna, L., Moyano, E., Tortoriello, J., Cusido, R. M., Piñol, M. T., & Palazón, J. (2006). The effect of methyl jasmonate on triterpene and sterol metabolisms of Centella asiatica, Ruscus aculeatus and Galphimia glauca cultured plants. Phytochemistry, 67(18), 2041–2049.

    Article  CAS  PubMed  Google Scholar 

  • Mariani, T. S., Ramayanti, O., Yazaki, K., & Miyake, H. (2004). Development of somatic embryo in Lithospermum erythrorhizon Siebb. et Zucc and the study on the effect of methyl jasmonate on its maturation. Annales Bogorienses, 9(2), 72–79.

    Google Scholar 

  • Mira, M. M., Wally, O. S., Elhiti, M., El-Shanshory, A., Reddy, D. S., Hill, R. D., & Stasolla, C. (2016). Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin. Journal of Experimental Botany, 67(8), 2231–2246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Plant Physiology, 15(3), 473–497.

    Article  CAS  Google Scholar 

  • Naidu, B. P., Paleg, L. G., Aspinall, D., Jennings, A. C., & Jones, G. P. (1991). Amino acid and glycine betaine accumulation in cold-stressed wheat seedlings. Phytochemistry, 30(2), 407–409.

    Article  CAS  Google Scholar 

  • Pan, L., Zhao, X., Chen, M., Fu, Y., Xiang, M., & Chen, J. (2020). Effect of exogenous methyl jasmonate treatment on disease resistance of postharvest kiwifruit. Food Chemistry, 305, 125483.

    Article  CAS  PubMed  Google Scholar 

  • Park, O. S., Bae, S. H., Kim, S. G., & Seo, P. J. (2019). JA-pretreated hypocotyl explants potentiate de novo shoot regeneration in Arabidopsis. Plant Signaling & Behavior, 14(8), 1618180.

    Article  CAS  Google Scholar 

  • Podwyszyńska, M., Kosson, R., & Treder, J. (2015). Polyamines and methyl jasmonate in bulb formation of in vitro propagated tulips. Plant Cell, Tissue and Organ Culture, 123(3), 591–605.

    Article  CAS  Google Scholar 

  • Qaderi, A., Akbari, Z., Kalateh-jari, S., Fatehi, F., Tolyat, M., Jalali, M. M., & Naghdi, B. H. (2016). Improving trigonelline production in hairy root culture of fenugreek (Trigonella foenum-graecum). Journal of Medicinal Plants., 15(59), 73–80.

    Google Scholar 

  • Qiu, Z., Wang, K., Jiang, C., Su, Y., Fan, X., Li, J., Xue, S., & Yao, L. (2020). Trigonelline protects hippocampal neurons from oxygen-glucose deprivation-induced injury through activating the PI3K/Akt pathway. Chemico-Biological Interactions, 317, 108946.

    Article  CAS  PubMed  Google Scholar 

  • Ravnikar, M., Žel, J., Plaper, I., & Špacapan, A. (1993). Jasmonic acid stimulates shoot and bulb formation of garlic in vitro. Plant Growth Regulations, 12(2), 73–77.

    Article  CAS  Google Scholar 

  • Reinbothe, S., Mollenhauer, B., & Reinbothe, C. (1994). JIPs and RIPs: The regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. The Plant Cell, 6(9), 1197.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricard, B., Couee, I., Raymond, P., Saglio, P. H., Saint-Ges, V., & Pradet, A. (1994). Plant metabolism under hypoxia and anoxia. Plant Physiology and Biochemistry, 32, 1–10.

    CAS  Google Scholar 

  • Sánchez-Pujante, P. J., Gionfriddo, M., Sabater-Jara, A. B., Almagro, L., Pedreño, M. A., & Diaz-Vivancos, P. (2020). Enhanced bioactive compound production in broccoli cells due to coronatine and methyl jasmonate is linked to antioxidative metabolism. Journal of Plant Physiology, 248, 153136.

    Article  PubMed  CAS  Google Scholar 

  • Selim, S. A. (2011). Chemical composition, antioxidant and antimicrobial activity of the essential oil and methanol extract of the Egyptian lemongrass Cymbopogon proximus Stapf. Grasas y Aceites, 62(1), 55–61.

    Article  CAS  Google Scholar 

  • Shi, J., Xie, D., Qi, D., Peng, Q., Chen, Z., Schreiner, M., Lin, Z., & Baldermann, S. (2019). Methyl jasmonate-induced changes of flavor profiles during the processing of green, oolong, and black tea. Frontiers in Plant Science, 10(2019), 781.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sirhindi, G., Mushtaq, R., Gill, S. S., Sharma, P., Abd-Allah, E. F., & Ahmad, P. (2020). Jasmonic acid and methyl jasmonate modulate growth, photosynthetic activity and expression of photosystem II subunit genes in Brassica oleracea L. Scitific Reports, 10(1), 1–14.

    CAS  Google Scholar 

  • South, P. F., Cavanagh, A. P., Liu, H. W., & Ort, D. R. (2019). Synthetic glycolate metabolism pathways stimulate crop growth and productivity in the field. Science, 363, 6422.

    Article  CAS  Google Scholar 

  • Taeckholm, V. (1974). In Students flora of Egypt. Cairo University, Cooperative Printing.

    Google Scholar 

  • Taheri, Z., Vatankhah, E., & Jafarian, V. (2020). Methyl jasmonate improves physiological and biochemical responses of Anchusa italica under salinity stress. South African Journal of Botany, 130(2020), 375–382.

    Article  CAS  Google Scholar 

  • Tayyab, N., Naz, R., Yasmin, H., Nosheen, A., Keyani, R., Sajjad, M., Hassan, M. N., & Roberts, T. H. (2020). Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. PLoS ONE, 15, e0232269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tytgat, T. O., Verhoeven, K. J., Jansen, J. J., Raaijmakers, C. E., Bakx-Schotman, T., McIntyre, L. M., van der Putten, W. H., Biere, A., & van Dam, N. M. (2013). Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea. PLoS ONE, 11, e65502.

    Article  CAS  Google Scholar 

  • Wienstroer, J., Engqvist, M. K., Kunz, H. H., Flügge, U. I., & Maurino, V. G. (2012). d-Lactate dehydrogenase as a marker gene allows positive selection of transgenic plants. FEBS Letters, 586(1), 36–40.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analaytical Biochemistry, 372(2), 204–212.

    Article  CAS  Google Scholar 

  • Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0—a comprehensive server for metabolomics data analysis. Nucleic Acids Research, 40(W), 127-W133.

    Article  CAS  Google Scholar 

  • Yousefian, S., Lohrasebi, T., Farhadpour, M., & Haghbeen, K. (2020). Effect of methyl jasmonate on phenolic acids accumulation and the expression profile of their biosynthesis-related genes in Mentha spicata hairy root cultures. Plant Cell, Tissue and Organ Culture, 142, 285–297.

    Article  CAS  Google Scholar 

  • Zhang, F., Fu, X., Lv, Z., Lu, X., Shen, Q., Zhang, L., Zhu, M., Wang, G., Sun, X., Liao, Z., & Tang, K. (2015). A basic leucine zipper transcription factor, AabZIP1, connects abscisic acid signaling with artemisinin biosynthesis in Artemisia annua. Molecular Plant, 8(1), 163–175.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Liu, R., Zhu, Y., Gong, J., Yin, S., Sun, P., Feng, H., Wang, Q., Zhao, S., Wang, Z., & Li, G. (2020). Identification and characterization of circRNAs responsive to methyl jasmonate in Arabidopsis thaliana. International Journal of Molecular Sciences, 21(3), 792.

    Article  PubMed Central  CAS  Google Scholar 

  • Zhou, J., Chan, L., & Zhou, S. (2012). Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Current Medicinal Chemistry, 19(21), 3523–3531.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Culture Affairs and Missions Sector, Ministry of Higher Education, Egypt. NMR facilities were provided by SC-INBRE (2 P20 GM103499), NSF HBCU-UP (HRD-1332516), and NSF MRI (1429353).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by AA, EM. The first draft of the manuscript was written by AA and all authors edited the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Arezue Boroujerdi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We declare that all authors comply with Springer’s ethical policies.

Human and animal rights

No human participants or animals were involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 207 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdelsalam, A., Mahran, E., Chowdhury, K. et al. Effect of exogenous methyl jasmonate on in vitro propagation, metabolic profiling and proximadiol production from Cymbopogon schoenanthus subsp. proximus. Plant Physiol. Rep. 26, 548–560 (2021). https://doi.org/10.1007/s40502-021-00608-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-021-00608-x

Keywords

Navigation