Skip to main content
Log in

miR430: the novel heat-responsive microRNA identified from miRNome analysis in wheat (Triticum aestivum L.)

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

miRNAs are 21–24 nt non-coding RNAs involved in negative regulation of the target gene expression in response to stress and developmental cues. Wheat, the major staple food crop, is highly sensitive to heat stress (HS). Even moderate high temperatures during critical stages causes reduction in yield and quality of the grains. Here, we identified a novel miRNA (candidate miR430) from wheat using de novo assembly, and cloned it from wheat cv. HD2985 using universal adaptor. The identified miRNA was mapped on to the Chromosome 3B and predicted to have more than 30 target genes. Most of the targets identified were associated with heat shock proteins. Expression analysis of miR430 in contrasting wheat cultivars by quantitative real-time PCR revealed significant genotypic variations under HS. Tissue specific expression analysis showed relatively low expression in leaves, as compared with stem and root under HS. A negative correlation was found between the expression of miR430 and their respective target genes under HS. MiR430 can be used to manipulate the expression of target genes under HS towards enhancing HS tolerance for the development of ‘climate-smart’ wheat crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ambros, V. (2004). The functions of animal microRNAs. Nature, 431, 350–355.

    Article  CAS  PubMed  Google Scholar 

  • Barrera-Figueroa, B., Gao, L., Diop, N., Wu, Z., Ehlers, J., Roberts, P., et al. (2011). Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biology, 11, 127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Bolser, D. M., Kerhornou, A., Walts, B., & Kersey, P. (2014). Triticeae resources in Ensembl Plants. Plant and Cell Physiology. https://doi.org/10.1093/pcp/pcu183.

    PubMed  PubMed Central  Google Scholar 

  • Burrell, M. M. (2003). Starch: The need for improved quality or quantity-an overview. Journal of Experimental Botany, 54, 451–456.

    Article  CAS  PubMed  Google Scholar 

  • Chen, X., Lin, S., Liu, Q., Huang, J., Zhang, W., Lin, J., et al. (2014). Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. Biochimica et Biophysica Acta, 1844, 818–828.

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy, V., & Khanna-Chopra, R. (2003). Effect of heat stress on grain starch content in diploid, tetraploid and hexaploid wheat species. Journal of Agronomy and Crop Science, 189, 242–249.

    Article  Google Scholar 

  • Cossani, C. M., & Reynolds, M. P. (2012). Physiological traits for improving heat tolerance in wheat. Plant Physiology, 160, 1710–1718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, X., & Zhao, P. X. (2011). psRNATarget: A plant small RNA target analysis server. Nucleic Acids Research, 39(Web Server Issue), W155–W159. https://doi.org/10.1093/nar/gkr319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dryanova, A., Zekharov, A., & Gulick, P. J. (2008). Data mining for miRNAs and their targets in the Triticeae. Genome, 51, 433–443.

    Article  CAS  PubMed  Google Scholar 

  • Frazier, T., Sun, G., Burklew, C., & Zhang, B. (2011). Salt and drought stresses induce the aberrant expression of microRNA genes in tobacco. Molecular Biotechnology, 49, 159–165.

    Article  CAS  PubMed  Google Scholar 

  • Goswami, S., Kumar, R. R., & Rai, R. D. (2014). Role of heat responsive micro RNAs (miRNAs), transcription factors and heat shock proteins in regulation of starch granule biosynthesis in wheat (Triticum aestivum) under the terminal heat. Australian Journal of Crop Science, 8, 697–705.

    CAS  Google Scholar 

  • Goswami, S., Kumar, R. R., Sharma, S. K., Kala, Y. K., Singh, K., Gupta, R., et al. (2015). Calcium trigger protein kinases induced signal transduction for augmenting the thermotolerance of developing wheat grain under heat stress. Journal of Plant Biochemistry and Biotechnology. https://doi.org/10.1007/s13562-014-0295-1.

    Google Scholar 

  • Guan, Q., Lu, X., Zeng, H., Zhang, Y., & Zhu, J. (2013). Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis. Plant J, 74, 840–851.

    Article  CAS  PubMed  Google Scholar 

  • Jin, W., Li, N., Zhang, B., Wu, F., Li, W., Guo, A., et al. (2008). Identification and verification of microRNA in wheat (Triticum aestivum). Journal of Plant Research, 121, 351–355.

    Article  CAS  PubMed  Google Scholar 

  • Khraiwesh, B., Zhu, J. K., & Zhu, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochimica et Biophysica Acta, 1819, 137–148.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, R. R., Goswami, S., Sharma, S. K., Singh, K., Gadpayle, K. A., Singh, S. D., et al. (2012). Differential expression of heat shock protein and alteration in osmolyte accumulation under heat stress in wheat. Journal of Plant Biochemistry and Biotechnology, 22, 16–26.

    Article  Google Scholar 

  • Kumar, R. R., Pathak, H., Sharma, S. K., Kala, Y. K., Nirjal, M. K., Singh, G. P., et al. (2015). Novel and conserved heat-responsive microRNAs in wheat (Triticum aestivum L.). Functional & Integrative Genomics. https://doi.org/10.1007/s10142-014-0421-0.

    Google Scholar 

  • Kumar, R. R., Sharma, S. K., Goswami, S., Singh, G. P., Singh, R., Singh, K., et al. (2013). Characterization of differentially expressed stress-associated proteins in starch granule development under heat stress in wheat (Triticum aestivum L.). Ind J Biochem Biophys, 50, 126–138.

    CAS  Google Scholar 

  • Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., et al. (2004). MicroRNA genes are transcribed by RNA polymerase II. EMBO Journal, 23, 4051–4060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H. H., Tian, X., Li, Y. J., Wu, C. A., & Zheng, C. C. (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14, 836–843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, S., Sun, Y. H., Shi, R., Clark, C., Li, L., & Chiang, V. L. (2005). Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell, 17, 2186–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naya, L., Paul, S., Valdes-Lopez, O., Mendoza-Soto, A. B., Nova-Franco, B., Sosa-Valencia, G., et al. (2014). Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS ONE, 9, e84416.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stone, P. J., & Nicolas, M. E. (1995). Effect of heat stress during grain filling on two wheat varieties differing in heat tolerance grain growth. Aust J Plant Physiol, 22, 927–934.

    Article  Google Scholar 

  • Sun, F., Guo, G., Du, J., Guo, W., Peng, H., Ni, Z., et al. (2014). Whole-genome discovery of miRNAs and their targets in wheat (Triticum aestivum L.). BMC Plant Biology, 4, 14–142.

    Google Scholar 

  • Sunkar, R., Chinnusamy, V., Zhu, J., & Zhu, J. K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science, 12(7), 301–309.

    Article  CAS  PubMed  Google Scholar 

  • Sunkar, R., Li, Y. F., & Jagadeeswaran, G. (2012a). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17, 196–203.

    Article  CAS  PubMed  Google Scholar 

  • Sunkar, R., Li, Y. F., & Jagadeeswaran, G. (2012b). Functions of microRNAs in plant stress responses. Trends in Plant Science, 17, 196–203.

    Article  CAS  PubMed  Google Scholar 

  • Sunkar, R., & Zhu, J. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell, 16, 2001–2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viswanathan, C., & Khanna-Chopra, R. (2001). Effect of heat stress on grain growth, starch synthesis and protein synthesis in grains of wheat (Triticum aestivum L.) varieties differing in grain weight stability. Journal of Agronomy and Crop Science, 186, 1–7.

    Article  CAS  Google Scholar 

  • Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136, 669–687.

    Article  CAS  PubMed  Google Scholar 

  • Wardlaw, I. F., Blumenthal, C., Larroque, O., & Wrigley, C. W. (2002). Contrasting effects of chronic heat stress and heat shock on grain weight and flour quality in wheat. Functional Plant Biology, 29, 25–34.

    Article  Google Scholar 

  • Wei, B., Cai, T., Zhang, R., Li, A., Huo, N., Li, S., et al. (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and (Brachypodium distachyon(L.). Functional & Integrative Genomics, 9, 499–511.

    Article  CAS  Google Scholar 

  • Wu, H., Neilson, J., & Manjunath, N. (2010). MicroRNA cloning from cells of the immune system. Methods in Molecular Biology, 667, 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Xin, M., Wang, Y., Yao, Y., Xie, C., Peng, H., Ni, Z., et al. (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC Plant Biology, 10, 123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yao, Y., Guo, G., Ni, Z., Sunkar, R., Du, J., & Zhu, J. K. (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biology, 8, R96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yin, Z., Li, Y., Yu, J., Liu, Y., Li, C., Han, X., et al. (2012). Difference in miRNA expression profiles between two cotton cultivars with distinct salt sensitivity. Molecular Biology Reports, 39, 4961–4970.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, B. (2015). MicroRNA: A new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany. https://doi.org/10.1093/jxb/erv013.

    Google Scholar 

  • Zhang, B., Pan, X., Cobb, G. P., & Anderson, T. A. (2006). Plant microRNA: A small regulatory molecule with a big impact. Development Biology, 289, 3–16.

    Article  CAS  Google Scholar 

  • Zhang, B., Pan, X., Wang, Q. L., Cobb, G. P., & Anderson, T. A. (2005). Identification and characterization of new plant microRNAs using EST analysis. Cell Research, 15, 336–360.

    Article  PubMed  Google Scholar 

  • Zhao, C. Z., Xia, H., Frazier, T. P., Yao, Y. Y., Bi, Y. P., Li, A. Q., et al. (2010). Deep sequencing identifies novel and conserved microRNAs in peanuts (Arachis hypogaea L.). BMC Plant Biology, 10, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., & Luo, L. (2010). Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 61, 4157–4168.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support received from Indian Council of Agriculture Research (ICAR) under the National Innovations for Climate Resilient Agriculture (NICRA) Project (12/115 TG3079) and extra-mural research funding by SERB, Department of Science and Technology (DST) (Project no. SERB/SB/SO/PS/07/2014) is highly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

MK, RRK—conceived and designed the experiments. MK, SG, RRK—involved in isolation and cloning of miRNA. PV, MK—performed transcript profiling. RRK, RDR, VC, SP—wrote the paper and edited the manuscript.

Corresponding author

Correspondence to Ranjeet R. Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

40502_2017_341_MOESM1_ESM.docx

Fig S1. Total microRNA isolated from different tissues of wheat cultivars HD2985 (thermotolerant) and HD2329 (thermosusceptible) under control (22 °C) and heat stress (42 °C, 2 h) treatments; miPremier microRNA isolation kit (Sigma-Aldrich, UK) was used for the isolation; 12% gel was used for the SDS-PAGE; M1- 100 bp DNA ladder, M2- 50 bp DNA ladder. Fig S2. PCR amplification and restriction analysis of novel microRNA identified based on miRNome analysis of wheat, (a) Amplicon of miR430, (b) Restriction analysis of plasmid with EcoRI; mature miR430 specific forward primer was used along with universal reverse primer (as given in the kit) for the amplification, amplicon was cloned in pGEMTEasy vector (Promega, UK) before sequencing by Sangers di-deoxy method, 3% agarose gel was used for the visualization. Fig S3. Pre-mature sequence of novel miR430 amplified from HD2985 cultivar of wheat; Sangers di-deoxy method was used for the sequencing, shaded sequence shows the mature sequence of the identified miRNA. (DOCX 896 kb)

Supplementary material 2 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Kumar, R.R., Goswami, S. et al. miR430: the novel heat-responsive microRNA identified from miRNome analysis in wheat (Triticum aestivum L.). Ind J Plant Physiol. 22, 566–576 (2017). https://doi.org/10.1007/s40502-017-0341-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0341-9

Keywords

Navigation