Skip to main content
Log in

Evaluation of chickpea (Cicer arietinum L.) genotypes for heat tolerance: a physiological assessment

  • Original Article
  • Published:
Indian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

A field experiment was carried out in factorial randomized block design to evaluate 56 chickpea (Cicer arietinum L.) genotypes for high temperature tolerance. High temperature was imposed by delaying sowing dates i.e. normal (9th November) and late sowing (19th December). Under late sown condition, high temperature was experienced by crop starting from flowering stage to crop maturity (during this period maximum temperature ranged from 25 to 40 °C). Chickpea genotypes were assessed based on various physiological tests. A significant genotypic variability was recorded in relative water content, membrane stability index, canopy temperature depression (CTD), photosynthetic pigments, photosynthetic rate (PN), canopy photosynthesis, growth, and yield based indices. In general, late sown high temperature stress condition significantly reduced all the physiological, growth and yield parameters except CTD. For each trait promising genotypes under late sown (high temperature) condition were identified. Furthermore, photosynthetic pigment profile under late sown high temperature condition at podding stage was analyzed using thin layer chromatography and that also revealed the genotypic variations. Tolerant genotypes in general maintained darker bands and also showed more number of photosynthetic pigments than relatively sensitive ones. In addition to this, total carotenoids content, under late sown condition at podding stage exhibited significant positive association with heat tolerance index (HTI), CTD, rate of photosynthesis and total chlorophyll content. That in turn indicated that higher level of total carotenoids played important role to maintain heat tolerance under late sown high temperature condition by protecting the photosynthetic machinery. In general, genotypes identified for high temperature tolerance based on HTI, heat susceptibility index (HSI) and heat yield stability index (HYSI), also had better physiological performance as evident from higher values of almost all physiological parameters recorded during the present study. Further, on the basis of all over performance, eight genotypes Pusa 1103, Pusa 1003, KWR 108, BGM 408, BG 240, PG 95333, JG 14, BG 1077 proved to be high temperature tolerant (HSI ≤ 0.9, HTI ≥ 0.59 and HYSI ≥ 50%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arnon, D. I. (1949). Copper enzyme polyphenoloxides in isolated chloroplast in Beta vulgaris. Plant Physiology, 24, 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf, M., & Hafeez, M. (2004). Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biologia Plantarum, 48, 81–86.

    Article  CAS  Google Scholar 

  • Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 21, 43–47.

    Article  Google Scholar 

  • Blum, A., Klueva, N., & Nguyen, H. T. (2001). Wheat cellular thermotolerance is related to yield under heat stress. Euphytica, 117, 117–123.

    Article  Google Scholar 

  • Bouslama, M., & Schapaugh, W. T. (1984). Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24, 933–937.

    Article  Google Scholar 

  • Camejo, D., Rodríguez, P., Morales, M. A., Dell’Amico, J. M., Torrecillas, A., & Alarcón, J. J. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162, 281–289.

    Article  CAS  PubMed  Google Scholar 

  • Chen, T. H. H., Shen, Z. Y., & Lee, P. H. (1982). Adaptability of crop plants to high temperature stress. Crop Science, 22, 719–725.

    Article  Google Scholar 

  • Craufurd, P. Q., Prasad, P. V., & Summerfield, R. J. (2002). Dry matter production and rate of change of harvest index at high temperature in peanut. Crop Science, 42, 46–151.

    Article  Google Scholar 

  • Devasirvatham, V., Tan, D. K. Y., Gaur, P. M., Raju, T. N., & Trethowan, R. M. (2012). High temperature tolerance in chickpea and its implications for plant improvement. Crop & Pasture Science, 63, 419–428.

    Article  Google Scholar 

  • Hall, A. E. (1992). Breeding for heat tolerance. Plant Breeding Review, 10, 129–168.

    Google Scholar 

  • Havaux, M. (1998). Carotenoids as membrane stabilizers in chloroplasts. Trends in Plant Science, 3, 147–151.

    Article  Google Scholar 

  • Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57, 1332–1334.

    Article  CAS  Google Scholar 

  • Kalra, N., Chakraborty, D., Sharma, A., Rai, H. K., Jolly, M., Chander, S., et al. (2008). Effect of temperature on yield of some winter crops in northwest India. Current Science, 94, 82–88.

    Google Scholar 

  • Krishnamurthy, L., Gaur, P. M., Basu, P. S., Chaturvedi, S. K., Tripathi, S., Vadez, V., et al. (2011). Large genetic variation for heat tolerance in the reference collection of chickpea (Cicer arietinum L.) germplasm. Plant Genetic Resources, 9, 59–61.

    Article  Google Scholar 

  • Kumar, M., Sharma, R. K., Kumar, P., Singh, G. P., Sharma, J. B., & Gajghate, R. (2013). Evaluation of bread wheat (Triticum aestivum L.) genotypes for terminal heat tolerance through physiological traits and grain yield. Indian Journal of Genetics & Plant Breeding, 73(4), 446–449.

    Article  Google Scholar 

  • Lichtenthaler, H. K., & Welburn, A. R. (1983). Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591–592.

    Article  CAS  Google Scholar 

  • Martineau, J. R., Specht, J. E., Williams, J. H., & Sullivan, C. Y. (1979). Temperature tolerance in soybean. I. Evaluation of technique for assessing cellular membrane thermostability. Crop Science, 19, 75–78.

    Article  Google Scholar 

  • Mendham, N. J., & Salisbury, P. A. (1995). Physiology, crop development, growth and yield. In D. S. Kimber & D. I. McGregor (Eds.), Brassica oilseeds: Production and utilization (pp. 11–64). London: CABI.

    Google Scholar 

  • Morita, S., Yonermaru, J., & Takahashi, J. (2005). Grain growth and endosperm cell size under high night temperature in rice (Oryza sativa L.). Annals of Botany, 95, 695–701.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pocock, T., Krol, M., & Huner, N. P. A. (2004). The determination and quantification of photosynthetic pigments by reverse phase high-performance liquid chromatography, thin-layer chromatography, and spectrophotometry. In R. Carpentier (Ed.), Methods in molecular biology, vol. 274: Photosynthesis research protocols (pp. 137–148). Totowa: Humana Press Inc.

    Chapter  Google Scholar 

  • Porch, T. G. (2006). Application of stress indices for heat tolerance screening of common bean. Journal of Agronomy and Crop Science, 192, 390–394.

    Article  Google Scholar 

  • Purushothamana, R., Thudi, M., Krishnamurthya, L., Upadhyayaa, H. D., Kashiwagi, J., Gowdaa, C. L. L., et al. (2015). Association of mid-reproductive stage canopy temperature depression with the molecular markers and grain yields of chickpea (Cicer arietinum L.) germplasm under terminal drought. Field Crops Research, 174, 1–11.

    Article  Google Scholar 

  • Reynolds, M. P., & Trethowan, R. M. (2007). Physiological interventions in breeding for adaptation to Abiotic stress. In J. H. J. Spiertz, P. C. Struik, & H. H. van Laar (Eds.), Scale and complexity in plant systems research: Gene-plant-crop relations (pp. 129–146). Mexico: CIMMYT.

    Chapter  Google Scholar 

  • Simoes-Araujo, J. L., Rumjanek, N. G., & Margis-Pinheiro, M. (2003). Small heat shock proteins genes are differentially expressed in distinct varieties of common bean. Brazilian Journal Plant Physiology, 15, 33–41.

    Article  CAS  Google Scholar 

  • Srinivasan, A., Takeda, H., & Senboku, T. (1996). Heat tolerance in food legumes as evaluated by cell membrane thermostability and chlorophyll fluorescence techniques. Euphytica, 88, 35–45.

    Article  Google Scholar 

  • Stoddard, F. L., Balko, C., Erskine, W., Khan, H. R., Link, W., & Sarker, A. (2006). Screening techniques and source of resistance to abiotic stresses in cool-season food legumes. Euphytica, 147, 167–186.

    Article  Google Scholar 

  • Subbarao, G. V., Kumar Rao, J. V. D. K., Kumar, J., Johansen, C., Deb U. K., Ahmed, I., Krishna Rao, M. V., Venkataratnam, L., Hebber, K. R., Sai, M. V. S. R., & Harris, D.(2001). Spatial distribution and quantification of rice-fallows in South asis-potential for legumes. Patancheru 502324, Andhra Pradesh, India: International Crops Research Institute for the Semi-Arid Tropics, p 316.

  • Summerfield, R. J., Hadley, P., Roberts, E. H., Minchin, F. R., & Rawsthrone, S. (1984). Sensitivity of chickpea (Cicer arietinum L.) to hot temperatures during the reproductive period. Experimental Agriculture, 20, 77–93.

    Article  Google Scholar 

  • Tongden, C., Basant, M., & Chakraborty, U. (2006). Screening of thermotolerant cultivars of chickpea using cell membrane stability test and biochemical markers. Journal of Hill Research, 19, 52–58.

    Google Scholar 

  • Tsukaguchi, T., Kawamitsu, Y., Takeda, H., Suzuki, K., & Egawa, Y. (2003). Water status of flower buds and leaves as affected by high temperature in heat tolerant and heat-sensitive cultivars of snap bean (Phaseolus vulgaris L.). Plant Production Science, 6, 4–27.

    Article  Google Scholar 

  • Van Hasselt, P. R., & Strikwerda, J. T. (1976). Pigment degradation in discs of the thermophilic Cucumis sativus as affected by light, temperature, sugar application and inhibitors. Plant Physiology, 37(4), 253–257.

    Article  Google Scholar 

  • Wahid, A. (2007). Physiological implications of metabolites biosynthesis in net assimilation and heat stress tolerance of sugarcane sprouts. Journal of Plant Research, 120, 219–228.

    Article  PubMed  Google Scholar 

  • Wahid, A., & Close, T. J. (2007). Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biologia Plantarum, 51, 104–109.

    Article  CAS  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223.

    Article  Google Scholar 

  • Wahid, A., & Ghazanfar, A. (2006). Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of Plant Physiology, 163, 723–730.

    Article  CAS  PubMed  Google Scholar 

  • Wahid, A., & Shabbir, A. (2005). Induction of heat stress tolerance in barley seedlings by pre-sowing seed treatment with glycinebetaine. Plant Growth Regulation, 46, 133–141.

    Article  CAS  Google Scholar 

  • Wang, J., Gan, Y. T., Clarke, F., & McDonald, C. L. (2006). Response of chickpea yield to high temperature stress during reproductive development. Crop Science, 46, 2171–2178.

    Article  Google Scholar 

  • Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Sai Prasad, S. V., Rebetzke, G. J., et al. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 63, 3485–3498.

    Article  CAS  PubMed  Google Scholar 

  • Weatherly, P. E. (1950). Studies in the water relations of cotton. 1. The field measurement of water deficits in leaves. New Phytologist, 49, 81–97.

    Article  Google Scholar 

  • Wise, R. R., Olson, A. J., Schrader, S. M., & Sharkey, T. (2004). Electron transport is the functional limitation of photosynthesis in field-grown Pima cotton plants at high temperature. Plant Cell Environment, 27, 717–724.

    Article  CAS  Google Scholar 

  • Xu, Q., Paulsen, A. Q., Guikema, J. A., & Paulsen, G. M. (1995). Functional and ultrastructural injury to photosynthesis in wheat by high temperature during maturation. Environmental and Experimental Botany, 35, 43–54.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the IARI, New Delhi for providing necessary facility and Council of Scientific and Industrial Research, New Delhi for financial support (CSIR Project No.: 38(1335)/12/EMR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Shah, D. & Singh, M.P. Evaluation of chickpea (Cicer arietinum L.) genotypes for heat tolerance: a physiological assessment. Ind J Plant Physiol. 22, 164–177 (2017). https://doi.org/10.1007/s40502-017-0301-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40502-017-0301-4

Keywords

Navigation