Skip to main content

Advertisement

Log in

Irrigation in Endodontics: a Review

  • Modern Approaches to Endodontics (S Kim and B Karabucak, Section Editors)
  • Published:
Current Oral Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this chapter was to review progress in the endodontic irrigation and advances in disinfection process and their clinical implication.

Recent Findings

This review shed the light on the culturing techniques shortcomings and the complexity of the root canal infection both anatomically and microbiologically. It also discusses in depth the most widely used endodontic irrigants, their antimicrobial efficacy, safety, advantages, and disadvantages. Irrigation issues to discuss are not merely centered on which antimicrobial solution to use, but also its method of delivery, preferably to all parts of the complex anatomy of root canals, bearing in mind the complex features of the offending microbial biofilm. The new direction has been toward developing a reliable delivery system to ensure thorough disinfection to the inaccessible areas of the root canal system such as passive ultrasonic irrigation, XP Endo finisher, Endo Vac, and Gentlewave.

Summary

To date, sodium hypochlorite (NaOCl) remains the gold standard of endodontic irrigants, due to its tissue dissolving capacity exhibited by no other. However, it still falls short of completely rendering root canal bacteria free. Moreover, its toxicity is detrimental when extruded beyond the apex. In this review, potential complementary irrigation solutions are discussed along with adjunctive irrigation techniques for safer and more effective delivery of the irrigation aiming to perfect disinfection of root canal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kakehashi S, Stanley HR, Fitzgerald RJ. The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surg Oral Med Oral Pathol. 1965;20:340–9.

    CAS  PubMed  Google Scholar 

  2. Siqueira JF, Rôças IN, Ricucci D. Biofilms in endodontic infection. Endodontic Topics. 2010;22:33–49.

    Google Scholar 

  3. Trope M, Bergenholtz G. Microbiological basis for endodontic treatment: can a maximal outcome be achieved in one visit? Endodontic Topics. 2002;1:40–53.

    Google Scholar 

  4. Siqueira JF Jr, Rocas IN. Clinical implications and microbiology of bacterial persistence after treatment procedures. J Endod. 2008;34(11):1291–301 e3.

    PubMed  Google Scholar 

  5. Shuping GB, Orstavik D, Sigurdsson A, Trope M. Reduction of intracanal bacteria using nickel-titanium rotary instrumentation and various medications. J Endod. 2000;26(12):751–5.

    CAS  PubMed  Google Scholar 

  6. Paque F, Ganahl D, Peters OA. Effects of root canal preparation on apical geometry assessed by micro-computed tomography. J Endod. 2009;35(7):1056–9.

    PubMed  Google Scholar 

  7. Estrela C, Estrela CR, Barbin EL, Spano JC, Marchesan MA, Pecora JD. Mechanism of action of sodium hypochlorite. Braz Dent J. 2002;13(2):113–7.

    PubMed  Google Scholar 

  8. Zehnder M, Kosicki D, Luder H, Sener B, Waltimo T. Tissue-dissolving capacity and antibacterial effect of buffered and unbuffered hypochlorite solutions. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2002;94(6):756–62.

    PubMed  Google Scholar 

  9. Portenier I, Waltimo T, Orstavik D, Haapasalo M. The susceptibility of starved, stationary phase, and growing cells of Enterococcus faecalis to endodontic medicaments. J Endod. 2005;31(5):380–6.

    PubMed  Google Scholar 

  10. Haapasalo HK, Siren EK, Waltimo TMT, Orstavik D, Haapasalo MPP. Inactivation of local root canal medicaments by dentine: an in vitro study. Int Endod J. 2000;33(2):126–31.

    CAS  PubMed  Google Scholar 

  11. Pappen FG, Qian W, Aleksejuniene J, Leonardo RD, Leonardo MR, Haapasalo M. Inhibition of sodium hypochlorite antimicrobial activity in the presence of bovine serum albumin. J Endod. 2010;36(2):268–71.

    PubMed  Google Scholar 

  12. Goncalves LS, Rodrigues RCV, Andrade CV, Soares RG, Vettore MV. The effect of sodium hypochlorite and chlorhexidine as irrigant solutions for root canal disinfection: a systematic review of clinical trials. J Endod. 2016;42(4):527–32.

    PubMed  Google Scholar 

  13. Vianna ME, Conrads G, Gomes BPFA, Horz HP. Identification and quantification of Archaea involved in primary endodontic infections. J Clin Microbiol. 2006;44(4):1274–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ercan ER, Ozekinci T, Atakul F, Gul K. Antibacterial activity of 2% chlorhexidine gluconate and 5.25% sodium hypochlorite in infected root canal: in vivo study. J Endod. 2004;30(2):84–7.

    PubMed  Google Scholar 

  15. Karuvilla JR, Kamath MP. Antimicrobial activity of 2.5% sodium hypochlorite and 0.2% chlorhexidine gluconate separately and combined, as endodontic irrigants. J Endod. 1998;24(7):472–6.

    Google Scholar 

  16. Rocas IN, Siqueira JF. Comparison of the in vivo antimicrobial effectiveness of sodium hypochlorite and chlorhexidine used as root canal irrigants: a molecular microbiology study. J Endod. 2011;37(2):143–50.

    PubMed  Google Scholar 

  17. Gomes BPFA, Martinho FC, Vianna ME. Comparison of 2.5% sodium hypochlorite and 2% chlorhexidine gel on oral bacterial lipopolysaccharide reduction from primarily infected root canals. J Endod. 2009;35(10):1350–3.

    PubMed  Google Scholar 

  18. Sathorn C, Parashos P, Messer HH. How useful is root canal culturing in predicting treatment outcome? J Endod. 2007;33(3):220–5.

    PubMed  Google Scholar 

  19. Pinheiro ET, Candeiro GT, Teixeira SR, Shin RC, Prado LC, Gavini G, et al. RNA-based assay demonstrated Enterococcus faecalis metabolic activity after chemomechanical procedures. J Endod. 2015;41(9):1441–4.

    PubMed  Google Scholar 

  20. de Paz LEC, Bergenholtz G, Svensater G. The effects of antimicrobials on endodontic biofilm bacteria. J Endod. 2010;36(1):70–7.

    Google Scholar 

  21. Yang Y, Shen Y, Wang ZJ, Huang XY, Maezono H, Ma JZ, et al. Evaluation of the susceptibility of multispecies biofilms in dentinal tubules to disinfecting solutions. J Endod. 2016;42(8):1246–50.

    PubMed  Google Scholar 

  22. Liu H, Wei X, Ling J, Wang W, Huang X. Biofilm formation capability of Enterococcus faecalis cells in starvation phase and its susceptibility to sodium hypochlorite. J Endod. 2010;36(4):630–5.

    CAS  PubMed  Google Scholar 

  23. Du TF, Wang ZJ, Shen Y, Ma JZ, Cao YG, Haapasalo M. Combined antibacterial effect of sodium hypochlorite and root canal sealers against Enterococcus faecalis biofilms in dentin canals. J Endod. 2015;41(8):1294–8.

    PubMed  Google Scholar 

  24. Pladisai P, Ampornaramveth RS, Chivatxaranukul P. Effectiveness of different disinfection protocols on the reduction of bacteria in Enterococcus faecalis biofilm in teeth with large root canals. J Endod. 2016;42(3):460–4.

    PubMed  Google Scholar 

  25. Rodrigues RCV, Zandi H, Kristoffersen AK, Enersen M, Mdala I, Orstavik D, et al. Influence of the apical preparation size and the irrigant type on bacterial reduction in root canal-treated teeth with apical periodontitis. J Endod. 2017;43(7):1058–63.

    PubMed  Google Scholar 

  26. Hong SW, Baik JE, Kang SS, Kum KY, Yun CH, Han SH. Sodium hypochlorite inactivates lipoteichoic acid of Enterococcus faecalis by deacylation. J Endod. 2016;42(10):1503–8.

    PubMed  Google Scholar 

  27. Hand RE, Smith ML, Harrison JW. Analysis of the effect of dilution on the necrotic tissue dissolution property of sodium hypochlorite. J Endod. 1978;4(2):60–4.

    CAS  PubMed  Google Scholar 

  28. Spangberg L, Engström B, Langeland K. Biologic effects of dental materials: 3. Toxicity and antimicrobial effect of endodontic antiseptics in vitro. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 1973;36(6):856–71.

    CAS  Google Scholar 

  29. Cunningham WT, Balekjian AY. Effect of temperature on collagen-dissolving ability of sodium hypochlorite endodontic irrigant. Oral Surg Oral Med Oral Pathol. 1980;49(2):175–7.

    CAS  PubMed  Google Scholar 

  30. Abou-Rass M, Oglesby SW. The effects of temperature, concentration, and tissue type on the solvent ability of sodium hypochlorite. J Endod. 1981;7(8):376–7.

    CAS  PubMed  Google Scholar 

  31. de Hemptinne F, Slaus G, Vandendael M, Jacquet W, De Moor RJ, Bottenberg P. In vivo intracanal temperature evolution during endodontic treatment after the injection of room temperature or preheated sodium hypochlorite. J Endod. 2015;41(7):1112–5.

    PubMed  Google Scholar 

  32. Moorer WR, Wesselink PR. Factors promoting the tissue dissolving capability of sodium-hypochlorite. Int Endod J. 1982;15(4):187–96.

    CAS  PubMed  Google Scholar 

  33. Stojicic S, Zivkovic S, Qian W, Zhang H, Haapasalo M. Tissue dissolution by sodium hypochlorite: effect of concentration, temperature, agitation, and surfactant. J Endod. 2010;36(9):1558–62.

    PubMed  Google Scholar 

  34. Verma N, Sangwan P, Tewari S, Duhan J. Effect of different concentrations of sodium hypochlorite on outcome of primary root canal treatment: a randomized controlled trial. J Endod. 2019;45(4):357–63.

    PubMed  Google Scholar 

  35. Frough-Reyhani M, Ghasemi N, Soroush-Barhaghi M, Amini M, Gholizadeh Y. Antimicrobial efficacy of different concentration of sodium hypochlorite on the biofilm of Enterococcus faecalis at different stages of development. J Clin Exp Dent. 2016;8(5):e480–4. https://doi.org/10.4317/jced.53158.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang Z, Shen Y, Haapasalo M. Effectiveness of endodontic disinfecting solutions against young and old Enterococcus faecalis biofilms in dentin canals. J Endod. 2012;38(10):1376–9.

    CAS  PubMed  Google Scholar 

  37. Zand V, Milani AS, Amini M, Barhaghi MHS, Lotfi M, Rikhtegaran S, et al. Antimicrobial efficacy of photodynamic therapy and sodium hypochlorite on monoculture biofilms of Enterococcus faecalis at different stages of development. Photomed Laser Surg. 2014;32(5):245–51.

    CAS  PubMed  Google Scholar 

  38. Clegg MS, Vertucci FJ, Walker C, Britto LR. The effect of exposure to irrigant solutions on apical dentin biofilms in vitro. J Endod. 2006;32(5):434–7.

    CAS  PubMed  Google Scholar 

  39. Moreira DM, Almeida JFA, Ferraz CCR, Gomes BPFD, Line SRP, Zaia AA. Structural analysis of bovine root dentin after use of different endodontics auxiliary chemical substances. J Endod. 2009;35(7):1023–7.

    PubMed  Google Scholar 

  40. Nikaido T, Takano Y, Sasafuchi Y, Burrow MF, Tagami J. Bond strengths to endodontically-treated teeth. Am J Dent. 1999;12(4):177–80.

    CAS  PubMed  Google Scholar 

  41. Guivarc'h M, Ordioni U, Ahmed HMA, Cohen S, Catherine JH, Bukiet F. Sodium hypochlorite accident: a systematic review. J Endod. 2017;43(1):16–24.

    PubMed  Google Scholar 

  42. Hulsmann M, Hahn W. Complications during root canal irrigation - literature review and case reports. Int Endod J. 2000;33(3):186–93.

    CAS  PubMed  Google Scholar 

  43. Spencer HR, Ike V, Brennan PA. Review: the use of sodium hypochlorite in endodontics - potential complications and their management. Br Dent J. 2007;202(9):555–9.

    CAS  PubMed  Google Scholar 

  44. Basrani B, Haapasalo M. Update on endodontic irrigating solutions. Endodontic Topics. 2012;27(1):74–102.

    Google Scholar 

  45. Zhu WC, Gyamfi J, Niu LN, Schoeffel GJ, Liu SY, Santarcangelo F, et al. Anatomy of sodium hypochlorite accidents involving facial ecchymosis-a review. J Dent. 2013;41(11):935–48.

    CAS  PubMed  Google Scholar 

  46. Hales JJ, Jackson CR, Everett AP, Moore SH. Treatment protocol for the management of a sodium hypochlorite accident during endodontic therapy. Gen Dent. 2001;49(3):278–81.

    CAS  PubMed  Google Scholar 

  47. Caputa PE, Retsas A, Kuijk L. Chavez de Paz LE, Boutsioukis C. Ultrasonic irrigant activation during root canal treatment: a systematic review. J Endod. 2019;45(1):31–44 e13.

    PubMed  Google Scholar 

  48. Arias-Moliz MT, Morago A, Ordinola-Zapata R, Ferrer-Luque CM, Ruiz-Linares M, Baca P. Effects of dentin debris on the antimicrobial properties of sodium hypochlorite and etidronic acid. J Endod. 2016;42(5):771–5.

    PubMed  Google Scholar 

  49. Kumar T, Dhillon JS, Gill GS, Singla R, Rani S, Dhillon M. An in vitro comparison of the antimicrobial efficacy of positive pressure and negative pressure irrigation techniques in root canals infected with Enterococcus faecalis. J Conserv Dent. 2018;21(4):438–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hockett JL, Dommisch JK, Johnson JD, Cohenca N. Antimicrobial efficacy of two irrigation techniques in tapered and nontapered canal preparations: an in vitro study. J Endod. 2008;34(11):1374–7.

    PubMed  Google Scholar 

  51. Brito PRR, Souza LC, de Oliveira JCM, Alves FRF, De-Deus G, Lopes HP, et al. Comparison of the effectiveness of three irrigation techniques in reducing intracanal Enterococcus faecalis populations: an in vitro study. J Endod. 2009;35(10):1422–7.

    PubMed  Google Scholar 

  52. Silva EJNL, Carvalho CR, Belladonna FG, Prado MC, Lopes RT, De-Deus G, et al. Micro-CT evaluation of different final irrigation protocols on the removal of hard-tissue debris from isthmus-containing mesial root of mandibular molars. Clin Oral Invest. 2019;23(2):681–7.

    Google Scholar 

  53. Freire LG, Iglecias EF, Cunha RS, Dos Santos M, Gavini G. Micro-computed tomographic evaluation of hard tissue debris removal after different irrigation methods and its influence on the filling of curved canals. J Endod. 2015;41(10):1660–6.

    PubMed  Google Scholar 

  54. Thomas AR, Velmurugan N, Smita S, Jothilatha S. Comparative evaluation of canal isthmus debridement efficacy of modified EndoVac technique with different irrigation systems. J Endod. 2014;40(10):1676–80.

    PubMed  Google Scholar 

  55. Azim AA, Aksel H, Zhuang TT, Mashtare T, Babu JP, Huang GTJ. Efficacy of 4 irrigation protocols in killing bacteria colonized in dentinal tubules examined by a novel confocal laser scanning microscope analysis. J Endod. 2016;42(6):928–34.

    PubMed  PubMed Central  Google Scholar 

  56. Alves FRF, Andrade CV, Marceliano-Alves ME, Perez AR, Rocas IN, Versiani MA, et al. Adjunctive Steps for disinfection of the mandibular molar root canal system: a correlative bacteriologic, micro-computed tomography, and cryopulverization approach. J Endod. 2016;42(11):1667–72.

    PubMed  Google Scholar 

  57. Bao PP, Shen Y, Lin J, Haapasalo M. In vitro efficacy of XP-endo finisher with 2 different protocols on biofilm removal from apical root canals. J Endod. 2017;43(2):321–5.

    PubMed  Google Scholar 

  58. Bedier MM, Hashem AAR, Hassan YM. Improved dentin disinfection by combining different-geometry rotary nickel-titanium files in preparing root canals. Restor Dent Endod. 2018;43(4):e46.

    PubMed  PubMed Central  Google Scholar 

  59. Xin Y, Yang J, Song KY. In vitro evaluation of the effectiveness of XP-endo Finisher file on smear layer removal after root canal instrumentation. Hua Xi Kou Qiang Yi Xue Za Zhi. 2019;37(1):48–52.

    PubMed  Google Scholar 

  60. De-Deus G. Belladonna FG, de Siqueira Zuolo Aea. Clin Oral Invest. 2018;23:3087–93. https://doi.org/10.1007/s00784-018-2729-y.

    Article  Google Scholar 

  61. Zhao Y, Fan W, Xu T, Tay FR, Gutmann JL, Fan B. Evaluation of several instrumentation techniques and irrigation methods on the percentage of untouched canal wall and accumulated dentine debris in C-shaped canals. Int Endod J. .

  62. Haapasalo M, Wang Z, Shen Y, Curtis A, Patel P, Khakpour M. Tissue dissolution by a novel multisonic ultracleaning system and sodium hypochlorite. J Endod. 2014;40(8):1178–81.

    PubMed  Google Scholar 

  63. Molina B, Glickman G, Vandrangi P, Khakpour M. Evaluation of root canal debridement of human molars using the gentle wave system. J Endod. 2015;41(10):1701–5.

    PubMed  Google Scholar 

  64. Charara K, Friedman S, Sherman A, Kishen A, Malkhassian G, Khakpour M, et al. Assessment of apical extrusion during root canal irrigation with the novel GentleWave system in a simulated apical environment. J Endod. 2016;42(1):135–9.

    PubMed  Google Scholar 

  65. Sigurdsson A, Garland RW, Le KT, Rassoulian SA. Healing of periapical lesions after endodontic treatment with the GentleWave procedure: a prospective multicenter clinical study. J Endod. 2018;44(3):510–7.

    PubMed  Google Scholar 

  66. Löe H. Does chlorhexidine have a place in the prophylaxis of dental diseases? LHJPR. 1973;12(Suppl):93–9.

    Google Scholar 

  67. Okino LA, Siqueira EL, Santos M, Bombana AC, Figueiredo JA. Dissolution of pulp tissue by aqueous solution of chlorhexidine digluconate and chlorhexidine digluconate gel. Int Endod J. 2004;37(1):38–41.

    CAS  PubMed  Google Scholar 

  68. Gomes BP, Vianna ME, Zaia AA, Almeida JF, Souza-Filho FJ, Ferraz CC. Chlorhexidine in endodontics. Braz Dent J. 2013;24(2):89–102.

    PubMed  Google Scholar 

  69. Bukhary S, Balto H. Antibacterial Efficacy of Octenisept, Alexidine, Chlorhexidine, and sodium hypochlorite against Enterococcus faecalis biofilms. J Endod. 2017;43(4):643–7.

    PubMed  Google Scholar 

  70. Spijkervet FK, van Saene JJ, van Saene HK, Panders AK, Vermey A, Fidler V. Chlorhexidine inactivation by saliva. Oral Surg Oral Med Oral Pathol. 1990;69(4):444–9.

    CAS  PubMed  Google Scholar 

  71. Zamany A, Safavi K, Spangberg LSW. The effect of chlorhexidine as an endodontic disinfectant. Oral Surg Oral Med O. 2003;96(5):578–81.

    Google Scholar 

  72. Sjogren U, Figdor D, Persson S, Sundqvist G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J. 1997;30(5):297–306.

    CAS  PubMed  Google Scholar 

  73. Rolla G, Loe H, Schiott CR. The affinity of chlorhexidine for hydroxyapatite and salivary mucins. J Periodontal Res. 1970;5(2):90–5.

    CAS  PubMed  Google Scholar 

  74. Rosenthal S, Spångberg L, Safavi K. Chlorhexidine substantivity in root canal dentin. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 2004;98(4):488–92.

    PubMed  Google Scholar 

  75. Souza M, Cecchin D, Farina AP, Leite CE, Cruz FF, Pereira Cda C, et al. Evaluation of chlorhexidine substantivity on human dentin: a chemical analysis. J Endod. 2012;38(9):1249–52.

    PubMed  Google Scholar 

  76. Chaves LP, Ciantelli TL, Araujo DFG, Giacomini MC, Tjaderhane L, Scaffa PMC, et al. How proteolytic inhibitors interact with dentin on glass-fiber post luting over 6 months. J Mech Behav Biomed. 2018;79:348–53.

    CAS  Google Scholar 

  77. Basrani BR, Manek S, Sodhi RNS, Fillery E, Manzur A. Interaction between sodium hypochlorite and chlorhexidine gluconate. J Endod. 2007;33(8):966–9.

    PubMed  Google Scholar 

  78. Krishnamurthy S, Sudhakaran S. Evaluation and prevention of the precipitate formed on interaction between sodium hypochlorite and chlorhexidine. J Endod. 2010;36(7):1154–7.

    PubMed  Google Scholar 

  79. Thomas JE, Sem DS. An in vitro spectroscopic analysis to determine whether para-chloroaniline is produced from mixing sodium hypochlorite and chlorhexidine. J Endod. 2010;36(2):315–7.

    PubMed  Google Scholar 

  80. Nowicki JB, Sem DS. An in vitro spectroscopic analysis to determine the chemical composition of the precipitate formed by mixing sodium hypochlorite and chlorhexidine. J Endod. 2011;37(7):983–8.

    PubMed  PubMed Central  Google Scholar 

  81. Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. Journal of Carcinogenesis. 2006;5(1):14.

    PubMed  PubMed Central  Google Scholar 

  82. Messmer AS, Nickel CH, Bareiss D. P-chloroaniline poisoning causing methemoglobinemia: a case report and review of the literature. Case Rep Emerg Med. 2015;2015:208732.

    PubMed  PubMed Central  Google Scholar 

  83. Siddique, et al. Re. Qualitative and quantitative analysis of precipitate formation following interaction of chlorhexidine with sodium hypochlorite, neem, and tulsi. J Conservative Dent. 2019;22(1):40–7. https://doi.org/10.4103/JCD.JCD_284_18.

    Article  CAS  Google Scholar 

  84. Akisue E, Tomita VS, Gavini G, Poli de Figueiredo JA. Effect of the combination of sodium hypochlorite and chlorhexidine on dentinal permeability and scanning electron microscopy precipitate observation. J Endod. 2010;36(5):847–50.

    PubMed  Google Scholar 

  85. Vivacqua-Gomes N, Ferraz CC, Gomes BP, Zaia AA, Teixeira FB, Souza-Filho FJ. Influence of irrigants on the coronal microleakage of laterally condensed gutta-percha root fillings. Int Endod J. 2002;35(9):791–5.

    CAS  PubMed  Google Scholar 

  86. Prado M, Santos HM, Rezende CM, Pinto AC, Faria RB, Simao RA, et al. Interactions between irrigants commonly used in endodontic practice: a chemical analysis. J Endod. 2013;39(4):505–10.

    PubMed  Google Scholar 

  87. Haapasalo M, Shen Y, Wang Z, Gao Y. Irrigation in endodontics. Br Dent J. 2014;216(6):299–303.

    CAS  PubMed  Google Scholar 

  88. de Almeida J, Hoogenkamp M, Felippe WT, Crielaard W, van der Waal SV. Effectiveness of EDTA and modified salt solution to detach and kill cells from Enterococcus faecalis biofilm. J Endod. 2016;42(2):320–3.

    PubMed  Google Scholar 

  89. Herrera DR, Martinho FC, de Jesus-Soares A, Zaia AA, Ferraz CCR, Almeida JFA, et al. Clinical efficacy of EDTA ultrasonic activation in the reduction of endotoxins and cultivable bacteria. Int Endod J. 2017;50(10):933–40.

    CAS  PubMed  Google Scholar 

  90. Singla MG, Garg A, Gupta S. MTAD in endodontics: an update review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(3):e70–6.

    PubMed  Google Scholar 

  91. Jiayi W, Ruijie H. Researchprogress on QMix properties in root canal irrigation. Hua Xi Kou Qiang Yi Xue Za Zhi. 2017;35(5):543–8.

    PubMed  Google Scholar 

  92. Shrestha A, Shi Z, Neoh KG, Kishen A. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod. 2010;36(6):1030–5.

    PubMed  Google Scholar 

  93. Barreras US, Mendez FT, Martinez REM, Valencia CS, Rodriguez PRM, Rodriguez JPL. Chitosan nanoparticles enhance the antibacterial activity of chlorhexidine in collagen membranes used for periapical guided tissue regeneration. Mat Sci Eng C-Mater. 2016;58:1182–7.

    Google Scholar 

  94. Li FC, Kishen A. Microtissue engineering root canal dentine with crosslinked biopolymeric nanoparticles for mechanical stabilization. Int Endod J. 2018;51(10):1171–80.

    PubMed  Google Scholar 

  95. Hashmi A, Zhang X, Kishen A. Impact of dentin substrate modification with chitosan-hydroxyapatite precursor nanocomplexes on sealer penetration and tensile strength. J Endod. 2019.

  96. Rodrigues CT, de Andrade FB, de Vasconcelos LRSM, Midena RZ, Pereira TC, Kuga MC, et al. Antibacterial properties of silver nanoparticles as a root canal irrigant against Enterococcus faecalis biofilm and infected dentinal tubules. Int Endod J. 2018;51(8):901–11.

    CAS  PubMed  Google Scholar 

  97. Wu DM, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod. 2014;40(2):285–90.

    PubMed  Google Scholar 

  98. Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. J Endod. 2016;42(10):1417–26.

    PubMed  Google Scholar 

  99. Gomes JE, Silva FO, Watanabe S, Cintra LTA, Tendoro KV, Dalto LG, et al. Tissue reaction to silver nanoparticles dispersion as an alternative irrigating solution. J Endod. 2010;36(10):1698–702.

    Google Scholar 

  100. Bukhari S, Kim D, Liu Y, Karabucak B, Koo H. Novel endodontic disinfection approach using catalytic nanoparticles. J Endod. 2018;44(5):806–12.

    PubMed  PubMed Central  Google Scholar 

  101. Hwang G, Paula AJ, Hunter EE, Liu Y, Babeer A, Karabucak B, et al. Catalytic antimicrobial robots for biofilm eradication. Sci Robot. 2019;4:eaaw2388.

    PubMed  PubMed Central  Google Scholar 

  102. Hamblin MR, Hasan T. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 2004;3(5):436–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Rodig T, Endres S, Konietschke F, Zimmermann O, Sydow HG, Wiegand A. Effect of fiber insertion depth on antibacterial efficacy of photodynamic therapy against Enterococcus faecalis in rootcanals. Clin Oral Investig. 2017;21(5):1753–9.

    PubMed  Google Scholar 

  104. Asnaashari M, Mojahedi SM, Asadi Z, Azari-Marhabi S, Maleki A. A comparison of the antibacterial activity of the two methods of photodynamic therapy (using diode laser 810 nm and LED lamp 630 nm) against Enterococcus faecalis in extracted human anterior teeth. Photodiagn Photodyn. 2016;13:233–7.

    Google Scholar 

  105. Garcez AS, Nunez SC, Hamblin MR, Ribeiro MS. Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion. J Endod. 2008;34(2):138–42.

    PubMed  Google Scholar 

  106. Garcez AS, Nunez SC, Hamblim MR, Suzuki H, Ribeiro MS. Photodynamic therapy associated with conventional endodontic treatment in patients with antibiotic-resistant microflora: a preliminary report. J Endod. 2010;36(9):1463–6.

    PubMed  Google Scholar 

  107. Muhammad OH, Engineer MCR, Rocca JP, Brulat-Bouchard N, Medioni E. Photodynamic therapy versus ultrasonic irrigation: interaction with endodontic microbial biofilm, an ex vivo study. Photodiagn Photodyn. 2014;11(2):171–81.

    Google Scholar 

  108. Zehnder M. Root canal irrigants. J Endod. 2006;32(5):389–98.

    PubMed  Google Scholar 

  109. Wang ZJ, Maezono H, Shen Y, Haapasalo M. Evaluation of root canal dentin erosion after different irrigation methods using energy-dispersive X-ray spectroscopy. J Endod. 2016;42(12):1834–9.

    CAS  PubMed  Google Scholar 

  110. Rossi-Fedele G, Dogramaci EJ, Guastalli AR, Steier L, de Figueiredo JAP. Antagonistic interactions between sodium hypochlorite, chlorhexidine, EDTA, and citric acid. J Endod. 2012;38(4):426–31.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Bukhari.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Modern Approaches to Endodontics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukhari, S., Babaeer, A. Irrigation in Endodontics: a Review. Curr Oral Health Rep 6, 367–376 (2019). https://doi.org/10.1007/s40496-019-00241-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40496-019-00241-6

Keywords

Navigation